Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRAS

2022

Multi-criteria metric to evaluate motion planners for underwater intervention

Autores
Silva, R; Matos, A; Pinto, AM;

Publicação
AUTONOMOUS ROBOTS

Abstract
Underwater autonomous manipulation is the capability of a mobile robot to perform intervention tasks that require physical contact with unstructured environments without continuous human supervision. Being difficult to assess the behaviour of existing motion planner algorithms, this research proposes a new planner evaluation metric to identify well-behaved planners for specialized tasks of inspection and monitoring of man-made underwater structures. This metric is named NEMU and combines three different performance indicators: effectiveness, safety and adaptability. NEMU deals with the randomization of sampling-based motion planners. Moreover, this article presents a benchmark of multiple planners applied to a 6 DoF manipulator operating underwater. Results conducted in real scenarios show that different planners are better suited for different tasks. Experiments demonstrate that the NEMU metric can be used to distinguish the performance of planners for particular movement conditions. Moreover, it identifies the most promising planner for collision-free motion planning, being a valuable contribution for the inspection of maritime structures, as well as for the manipulation procedures of autonomous underwater vehicles during close range operations.

2022

Microplastics Contamination of Large Pelagic Fish in the Open Atlantic Ocean

Autores
Pereira, R; Rodrigues, SM; Silva, D; Freitas, V; Almeida, CMR; Camilo, A; Barbosa, S; Silva, E; Ramos, S;

Publicação
SIBIC 2022

Abstract

2022

An holistic monitoring system for measurement of the atmospheric electric field over the ocean - the SAIL campaign

Autores
Barbosa, S; Dias, N; Almeida, C; Amaral, G; Ferreira, A; Lima, L; Silva, I; Martins, A; Almeida, J; Camilo, M; Silva, E;

Publicação
OCEANS 2022

Abstract
The atmospheric electric field is a key characteristic of the Earth system. Despite its relevance, oceanic measurements of the atmospheric electric field are scarce, as typically oceanic measurements tend to be focused on ocean properties rather than on the atmosphere above. This motivated the set-up of an innovative campaign on board the sail ship NRP Sagres focused on the measurement of the atmospheric electric field in the marine boundary layer. This paper describes the monitoring system that was developed to measure the atmospheric electric field during the planned circumnavigation expedition of the sail ship NRP Sagres.

2022

ProtoAtlantic: Innovation in the Marine Environment in the Atlantic Area Region

Autores
Lima, AP; Hernandez, HM; Giannoumis, J; O'Suilleabhain, D; OReilly, A; Heward, M; Presse, P; Santana, M; Falcon, JG; Silva, E;

Publicação
OCEANS 2022

Abstract
Blue Growth, a term first coined by the European Commission as an initiative to harness the untapped potential of Europe's oceans, seas and coasts, identified rich marine resources as an unique asset for economic development in coastal regions and on islands. The European Commission has through the Blue Growth objectives for the first time highlighted marine sectors as unique market opportunities with high growth potential which carry socio-economic importance to the development of coastal regions. Particularly marine sectors such as aquaculture, marine robotics, and marine renewable energy which fulfil global needs in food safety and security, enable monitoring and exploration in harsh and remote conditions, and globally growing energy needs were recognized as catalysts to achieve sustainable development. Marine start-ups and small and medium-sized enterprises (SME) were identified as potential drivers in emerging marine sectors. However, they require support mechanisms tailored to their needs as they are competing for the same business and financial support as land-based SMEs, yet the research and development infrastructure is more difficult to access. ProtoAtlantic, an Interreg Atlantic Area funded project, provided marine-specific support mechanisms to marine start-ups and SMEs in emerging sectors, including business support through the accelerator and mentorship programs, enabling companies to fast track their product development through access to prototyping and testing facilities in all partner regions. The Interreg Atlantic Area encompasses partner regions in France, Ireland, Portugal, Scotland, and Spain. The consortium partners consist of Technopole Brest Iroise (Brest, France), University College Cork - UCC (Cork, Ireland), County Council Cork (Cork, Ireland), INESC TEC (Porto, Portugal), the European Marine Energy Centre - EMEC (Orkney, Scotland), EMERGE (Canary Islands, Spain), and the lead partner, Innovalia Association (Canary Islands, Spain). The strategic collaboration between the partners provided marine start-ups access to testing facilities in the Atlantic Ocean. The extreme living laboratories provided by EMEC, the LiR National Ocean Testing Facilities at UCC's Centre of Marine and Renewable Energy (MaREI centre), and INESC TEC promise harsh real-life conditions which test the suitability of marine technologies to the limit thereby providing start-ups and SMEs with an extra layer of confidence in developing their technologies. This cross-regional collaboration puts the ProtoAltantic program in a unique position, as it is the first of its kind to dedicate marine-specific support to marine start-ups and SMEs which have benefited from the opportunities that ProtoAtlantic has provided. ProtoAtlantic developed a holistic model for the prototyping and exploitation of innovative ideas in emerging maritime sectors. After the identification of ideas from the research community, start-ups, and SMEs with product innovation capacity in the maritime sector, an acceleration program with a normed and structured process was implemented, thus creating a unique ecosystem in the Atlantic that is addressing a co-creation paradigm with the local European start-ups communities and all the stakeholders.

2022

Hyperspectral Imaging Zero-Shot Learning for Remote Marine Litter Detection and Classification

Autores
Freitas, S; Silva, H; Silva, E;

Publicação
REMOTE SENSING

Abstract
This paper addresses the development of a novel zero-shot learning method for remote marine litter hyperspectral imaging data classification. The work consisted of using an airborne acquired marine litter hyperspectral imaging dataset that contains data about different plastic targets and other materials and assessing the viability of detecting and classifying plastic materials without knowing their exact spectral response in an unsupervised manner. The classification of the marine litter samples was divided into known and unknown classes, i.e., classes that were hidden from the dataset during the training phase. The obtained results show a marine litter automated detection for all the classes, including (in the worst case of an unknown class) a precision rate over 56% and an overall accuracy of 98.71%.

2022

A SMACC based mission control system for autonomous underwater vehicles

Autores
Carvalho, D; Martins, A; Almeida, JM; Silva, E;

Publicação
2022 OCEANS HAMPTON ROADS

Abstract
Scientific and environmental focused deep sea exploration is being expanded and as such a new class of Autonomous Underwater Vehicle (AUV) capable of accessing deep underwater sea bed environment for long periods of time is being deployed. This type of vehicle and the mission environment poses challenges to the mission development as these operations contain many systems that must work together to ensure that the mission requirements are met and that the vehicle is operated safely. As such, a solution based on the SMACC library for Robotic Operating System (ROS) was proposed and tested using a simulator. The results shown were based on the simulation of three missions representative of different scenarios for a deep sea exploration AUV and they were evaluated on the completion of the mission plan.

  • 30
  • 182