Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CSE

2022

EPISA Platform: A Technical Infrastructure to Support Linked Data in Archival Management

Autores
Nunes, S; Silva, T; Martins, C; Peixoto, R;

Publicação
Proceedings of the 26th International Conference on Theory and Practice of Digital Libraries - Workshops and Doctoral Consortium, Padua, Italy, September 20, 2022.

Abstract
In this paper we describe the EPISA Platform, a technical infrastructure designed and developed to support archival records management and access using linked data technologies. The EPISA Platform follows a client-server paradigm, with a central component, the EPISA Server, responsible for storage, reasoning, authorization, and search; and a frontend component, the EPISA ArchClient, responsible for user interaction. The EPISA Server uses Apache Jena Fuseki for storage and reasoning, and Apache Solr for search. The EPISA ArchClient is a web application implemented using PHP Laravel and standard web technologies. The platform follows a modular architecture, based on Docker containers. We describe the technical details of the platform and the main user interaction workflows, highlighting the abstractions developed to integrate linked data in the archival management process. The EPISA Platform has been successfully used to support research and development of linked data use in the archival domain in the context of the EPISA project. © 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0)

2022

Multi-Agent-Based Recommender Systems: A Literature Review

Autores
Neto, J; Morais, AJ; Gonçalves, R; Coelho, AL;

Publicação
Proceedings of Sixth International Congress on Information and Communication Technology - ICICT 2021, London, UK, Volume 1

Abstract
Considering the growing volume of information and services available on the web, it has become essential to provide websites and applications with tools, such as recommender systems, capable of helping users to obtain the information and services appropriate to their interests. Due to the complexity of web adaptation and the ability of multi-agent systems to deal with complex problems, the use of multi-agent approaches in recommender systems has been increasing. In the present work, we make a thorough review of the use of multi-agent-based recommender systems. The review shows the diversity of applications of multi-agent systems in recommender systems, namely on what concerns the diversity of domains, different types of approaches and contribution to the performance improvement of the recommender systems.

2022

Detection of vehicle-based operations from geolocation data

Autores
Tavares, J; Ribeiro, J; Fontes, T;

Publicação
Transportation Research Procedia

Abstract
Geolocation data identifies the geographic location of people or objects, which may unveil the performance of some activity or operation. A good example is, if a vehicle is in a gas station then one may assume that the vehicle is being refuelled. This work aims to obtain vehicle-based operations from geolocation data by analysing the stationary states of vehicles, which may identify some motionless event (e.g. bus line stops and traffic incidents). Ultimately, these operations may be analysed with Process Mining techniques in order to discover the most significant ones and extract process related information. In this work, we studied the application of diverse approaches for detecting vehicle-based operations and identified different operations related to the bus services. The operations were also characterized according the distribution of their events, allowing to identify specific operations characteristics. The public transport network of Rio de Janeiro is used as a case study, which is supported by a real-time data stream of buses geolocations.

2022

UAV-Based Hyperspectral Monitoring Using Push-Broom and Snapshot Sensors: A Multisite Assessment for Precision Viticulture Applications

Autores
Sousa, JJ; Toscano, P; Matese, A; Di Gennaro, SF; Berton, A; Gatti, M; Poni, S; Padua, L; Hruska, J; Morais, R; Peres, E;

Publicação
SENSORS

Abstract
Hyperspectral aerial imagery is becoming increasingly available due to both technology evolution and a somewhat affordable price tag. However, selecting a proper UAV + hyperspectral sensor combo to use in specific contexts is still challenging and lacks proper documental support. While selecting an UAV is more straightforward as it mostly relates with sensor compatibility, autonomy, reliability and cost, a hyperspectral sensor has much more to be considered. This note provides an assessment of two hyperspectral sensors (push-broom and snapshot) regarding practicality and suitability, within a precision viticulture context. The aim is to provide researchers, agronomists, winegrowers and UAV pilots with dependable data collection protocols and methods, enabling them to achieve faster processing techniques and helping to integrate multiple data sources. Furthermore, both the benefits and drawbacks of using each technology within a precision viticulture context are also highlighted. Hyperspectral sensors, UAVs, flight operations, and the processing methodology for each imaging type' datasets are presented through a qualitative and quantitative analysis. For this purpose, four vineyards in two countries were selected as case studies. This supports the extrapolation of both advantages and issues related with the two types of hyperspectral sensors used, in different contexts. Sensors' performance was compared through the evaluation of field operations complexity, processing time and qualitative accuracy of the results, namely the quality of the generated hyperspectral mosaics. The results shown an overall excellent geometrical quality, with no distortions or overlapping faults for both technologies, using the proposed mosaicking process and reconstruction. By resorting to the multi-site assessment, the qualitative and quantitative exchange of information throughout the UAV hyperspectral community is facilitated. In addition, all the major benefits and drawbacks of each hyperspectral sensor regarding its operation and data features are identified. Lastly, the operational complexity in the context of precision agriculture is also presented.

2022

What Is the Relationship between the Sense of Presence and Learning in Virtual Reality? A 24-Year Systematic Literature Review

Autores
Krassmann, AL; Melo, M; Pinto, D; Peixoto, B; Bessa, M; Bercht, M;

Publicação
PRESENCE-VIRTUAL AND AUGMENTED REALITY

Abstract
The sense of presence is an important aspect of experiences in Virtual Reality (VR), an emerging technology in education, leading this construct to be increasingly researched in parallel to learning purposes. However, there is not a consensus in the literature on the outcomes of this association. Aiming to outline a panorama in this regard, a systematic literature review was conducted, with a comprehensive analysis of 140 primary studies recovered from five worldwide databases. The analysis shows an overview of 24 years of areas, factors, and methodological approaches that seem to be more inclined to benefit from the sense of presence toward learning purposes. We contribute to the advancement of state of the art by providing an understanding of the relationship among these variables, identifying potential ways to benefit from the sense of presence to further leverage the use of VR for learning purposes.

2022

A data mining approach to classify serum creatinine values in patients undergoing continuous ambulatory peritoneal dialysis

Autores
Brito, C; Esteves, M; Peixoto, H; Abelha, A; Machado, J;

Publicação
WIRELESS NETWORKS

Abstract
Continuous ambulatory peritoneal dialysis (CAPD) is a treatment used by patients in the end-stage of chronic kidney diseases. Those patients need to be monitored using blood tests and those tests can present some patterns or correlations. It could be meaningful to apply data mining (DM) to the data collected from those tests. To discover patterns from meaningless data, it becomes crucial to use DM techniques. DM is an emerging field that is currently being used in machine learning to train machines to later aid health professionals in their decision-making process. The classification process can found patterns useful to understand the patients' health development and to medically act according to such results. Thus, this study focuses on testing a set of DM algorithms that may help in classifying the values of serum creatinine in patients undergoing CAPD procedures. Therefore, it is intended to classify the values of serum creatinine according to assigned quartiles. The better results obtained were highly satisfactory, reaching accuracy rate values of approximately 95%, and low relative absolute error values.

  • 22
  • 217