2018
Autores
Silva, J; Aguiar, A; Silva, F;
Publicação
INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING
Abstract
Reducing the dimensionality of datasets is a fundamental step in the task of building a classification model. Feature selection is the process of selecting a smaller subset of features from the original one in order to enhance the performance of the classification model. The problem is known to be NP-hard, and despite the existence of several algorithms there is not one that outperforms the others in all scenarios. Due to the complexity of the problem usually feature selection algorithms have to compromise the quality of their solutions in order to execute in a practicable amount of time. Parallel computing techniques emerge as a potential solution to tackle this problem. There are several approaches that already execute feature selection in parallel resorting to synchronous models. These are preferred due to their simplicity and capability to use with any feature selection algorithm. However, synchronous models implement pausing points during the execution flow, which decrease the parallel performance. In this paper, we discuss the challenges of executing feature selection algorithms in parallel using asynchronous models, and present a feature selection algorithm that favours these models. Furthermore, we present two strategies for an asynchronous parallel execution not only of our algorithm but of any other feature selection approach. The first strategy solves the problem using the distributed memory paradigm, while the second exploits the use of shared memory. We evaluate the parallel performance of our strategies using up to 32 cores. The results show near linear speedups for both strategies, with the shared memory strategy outperforming the distributed one. Additionally, we provide an example of adapting our strategies to execute the Sequential forward Search asynchronously. We further test this version versus a synchronous one. Our results revealed that, by using an asynchronous strategy, we are able to save an average of 7.5% of the execution time.
2018
Autores
Mendes, A; Ferreira, JF;
Publicação
INTERACTIVE THEOREM PROVING, ITP 2018
Abstract
Despite great advances in computer-assisted proof systems, writing formal proofs using a traditional computer is still challenging due to mouse-and-keyboard interaction. This leads to scientists often resorting to pen and paper to write their proofs. However, when handwriting a proof, there is no formal guarantee that the proof is correct. In this paper we address this issue and present the initial steps towards a system that allows users to handwrite proofs using a pen-based device and that communicates with an external theorem prover to support the users throughout the proof writing process. We focus on calculational proofs, whereby a theorem is proved by a chain of formulae, each transformed in some way into the next. We present the implementation of a proof-of-concept prototype that can formally verify handwritten calculational proofs without the need to learn the specific syntax of theorem provers.
2018
Autores
Costa, CM; Sousa, A; Veiga, G;
Publicação
ROBOT 2017: THIRD IBERIAN ROBOTICS CONFERENCE, VOL 2
Abstract
Pose invariant object detection and classification plays a critical role in robust image recognition systems and can be applied in a multitude of applications, ranging from simple monitoring to advanced tracking. This paper analyzes the usage of the Bag of Words model for recognizing objects in different scales, orientations and perspective views within cluttered environments. The recognition system relies on image analysis techniques, such as feature detection, description and clustering along with machine learning classifiers. For pinpointing the location of the target object, it is proposed a multiscale sliding window approach followed by a dynamic thresholding segmentation. The recognition system was tested with several configurations of feature detectors, descriptors and classifiers and achieved an accuracy of 87% when recognizing cars from an annotated dataset with 177 training images and 177 testing images. © Springer International Publishing AG 2018.
2018
Autores
Adáo, T; Pádua, L; Hruška, J; Marques, P; Peres, E; Sousa, JJ; Cunha, A; Sousa, AMR; Morais, R;
Publicação
Proceedings of the International Conference on Geoinformatics and Data Analysis, ICGDA 2018, Prague, Czech Republic, April 20-22, 2018
Abstract
Vineyard parcels delimitation is a preliminary but important task to support zoning activities, which can be burdensome and time-consuming when manually performed. In spite of being desirable to overcome such issue, the implementation of a semi-/fully automatic delimitation approach can meet serious development challenges when dealing with vineyards like the ones that prevail in Douro Region (north-east of Portugal), mainly due to the great diversity of parcel/row formats and several factors that can hamper detection as, for example, interrupted rows and inter-row vegetation. Thereby, with the aim of addressing vineyard parcels detection and delimitation in Douro Region, a preliminary method based on segmentation and morphological operations upon high-resolution aerial imagery is proposed. This method was tested in a data set collected from vineyards located at the University of Trás-os-Montes and Alto Douro(Vila Real, Portugal). The presence of some of the previously mentioned challenging conditions - namely interrupted rows and inter-row grassing - in a few parcels contributed to lower the overall detection accuracy, pointing out the need for future improvements. Notwithstanding, encouraging preliminary results were achieved. © 2018 Association for Computing Machinery.
2018
Autores
Leal, JP;
Publicação
7th Symposium on Languages, Applications and Technologies, SLATE 2018, June 21-22, 2018, Guimaraes, Portugal
Abstract
Graphs with a large number of nodes and edges are difficult to visualize. Semantic graphs add to the challenge since their nodes and edges have types and this information must be mirrored in the visualization. A common approach to cope with this difficulty is to omit certain nodes and edges, displaying sub-graphs of smaller size. However, other transformations can be used to abstract semantic graphs and this research explores a particular one, both to reduce the graph’s size and to focus on its path patterns. Antigraphs are a novel kind of graph designed to highlight path patterns using this kind of abstraction. They are composed of antinodes connected by antiedges, and these reflect respectively edges and nodes of the semantic graph. The prefix “anti” refers to this inversion of the nature of the main graph constituents. Antigraphs trade the visualization of nodes and edges by the visualization of graph path patterns involving typed edges. Thus, they are targeted to users that require a deep understanding of the semantic graph it represents, in particular of its path patterns, rather than to users wanting to browse the semantic graph’s content. Antigraphs help programmers querying the semantic graph or designers of semantic measures interested in using it as a semantic proxy. Hence, antigraphs are not expected to compete with other forms of semantic graph visualization but rather to be used a complementary tool. This paper provides a precise definition both of antigraphs and of the mapping of semantic graphs into antigraphs. Their visualization is obtained with antigraphs diagrams. A web application to visualize and interact with these diagrams was implemented to validate the proposed approach. Diagrams of well-known semantic graphs are also presented and discussed. © José Paulo Leal.
2018
Autores
Silva, JMB; Ribeiro, P; Silva, FMA;
Publicação
Discovery Science - 21st International Conference, DS 2018, Limassol, Cyprus, October 29-31, 2018, Proceedings
Abstract
Linking an expert to his knowledge areas is still a challenging research problem. The task is usually divided into two steps: identifying the knowledge areas/topics in the text corpus and assign them to the experts. Common approaches for the expert profiling task are based on the Latent Dirichlet Allocation (LDA) algorithm. As a result, they require pre-defining the number of topics to be identified which is not ideal in most cases. Furthermore, LDA generates a list of independent topics without any kind of relationship between them. Expert profiles created using this kind of flat topic lists have been reported as highly redundant and many times either too specific or too general. In this paper we propose a methodology that addresses these limitations by creating hierarchical expert profiles, where the knowledge areas of a researcher are mapped along different granularity levels, from broad areas to more specific ones. For the purpose, we explore the rich structure and semantics of Heterogeneous Information Networks (HINs). Our strategy is divided into two parts. First, we introduce a novel algorithm that can fully use the rich content of an HIN to create a topical hierarchy, by discovering overlapping communities and ranking the nodes inside each community. We then present a strategy to map the knowledge areas of an expert along all the levels of the hierarchy, exploiting the information we have about the expert to obtain an hierarchical profile of topics. To test our proposed methodology, we used a computer science bibliographical dataset to create a star-schema HIN containing publications as star-nodes and authors, keywords and ISI fields as attribute-nodes. We use heterogeneous pointwise mutual information to demonstrate the quality and coherence of our created hierarchies. Furthermore, we use manually labelled data to serve as ground truth to evaluate our hierarchical expert profiles, showcasing how our strategy is capable of building accurate profiles. © 2018, Springer Nature Switzerland AG.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.