Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRAS

2013

Multi-Robot Cooperative Stereo for Outdoor Scenarios

Autores
Dias, A; Almeida, J; Silva, E; Lima, P;

Publicação
PROCEEDINGS OF THE 2013 13TH INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS (ROBOTICA)

Abstract
In this paper, we propose a cooperative perception framework for multi-robot real-time 3D high dynamic target estimation in outdoor scenarios based on monocular camera available on each robot. The relative position and orientation between robots establishes a flexible and dynamic stereo baseline. Overlap views subject to geometric constraints emerged from the stereo formulation, which allowed us to obtain a decentralized cooperative perception layer. Epipolar constraints related to the global frame are applied both in image feature matching and to feature searching and detection optimization in the image processing of robots with low computational capabilities. In contrast to classic stereo, the proposed framework considers all sources of uncertainty (in localization, attitude and image detection from both robots) in the determination of the objects best 3D localization and its uncertainty. The proposed framework can be later integrated in a decentralized data fusion (DDF) multi-target tracking approach where it can contribute to reduce rumor propagation data association and track initialization issues. We demonstrate the advantages of this approach in real outdoor scenario. This is done by comparing a stereo rigid baseline standalone target tracking with the proposed multi-robot cooperative stereo between a micro aerial vehicle (MAV) and an autonomous ground vehicle (AGV).

2013

TIGRE - An autonomous ground robot for outdoor exploration

Autores
Martins, A; Amaral, G; Dias, A; Almeida, C; Almeida, J; Silva, E;

Publicação
PROCEEDINGS OF THE 2013 13TH INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS (ROBOTICA)

Abstract
In this paper we present an autonomous ground robot developed for outdoor applications in unstructured scenarios. The robot was developed as a versatile robotics platform for development, test and validation of research in navigation, control, perception and multiple robot coordination on all terrain scenarios. The hybrid systems approach to the control architecture is discussed in the context of multiple robot coordination. The robot modular hardware and software architecture allows for a wide range of mission applications. A precise navigation system based on high accuracy GPS is used for accurate 3D environment mapping tasks. The vision system is also presented along with some example results from stereo target tracking in operational environment.

2013

Master's in Autonomous Systems: An Overview of the Robotics Curriculum and Outcomes at ISEP, Portugal

Autores
Silva, E; Almeida, J; Martins, A; Baptista, JP; Neves, BC;

Publicação
IEEE TRANSACTIONS ON EDUCATION

Abstract
Robotics research in Portugal is increasing every year, but few students embrace it as one of their first choices for study. Until recently, job offers for engineers were plentiful, and those looking for a degree in science and technology would avoid areas considered to be demanding, like robotics. At the undergraduate level, robotics programs are still competing for a place in the classical engineering graduate curricula. Innovative and dynamic Master's programs may offer the solution to this gap. The Master's degree in autonomous systems at the Instituto Superior de Engenharia do Porto (ISEP), Porto, Portugal, was designed to provide a solid training in robotics and has been showing interesting results, mainly due to differences in course structure and the context in which students are welcomed to study and work.

2013

6D visual odometry with dense probabilistic egomotion estimation

Autores
Silva, H; Bernardino, A; Silva, E;

Publicação
VISAPP 2013 - Proceedings of the International Conference on Computer Vision Theory and Applications

Abstract
We present a novel approach to 6D visual odometry for vehicles with calibrated stereo cameras. A dense probabilistic egomotion (5D) method is combined with robust stereo feature based approaches and Extended Kalman Filtering (EKF) techniques to provide high quality estimates of vehicle's angular and linear velocities. Experimental results show that the proposed method compares favorably with state-the-art approaches, mainly in the estimation of the angular velocities, where significant improvements are achieved.

2013

Real-Time Visual Ground-Truth System for Indoor Robotic Applications

Autores
Dias, A; Almeida, J; Martins, A; Silva, E;

Publicação
PATTERN RECOGNITION AND IMAGE ANALYSIS, IBPRIA 2013

Abstract
The robotics community is concerned with the ability to infer and compare the results from researchers in areas such as vision perception and multi-robot cooperative behavior. To accomplish that task, this paper proposes a real-time indoor visual ground truth system capable of providing accuracy with at least more magnitude than the precision of the algorithm to be evaluated. A multi-camera architecture is proposed under the ROS (Robot Operating System) framework to estimate the 3D position of objects and the implementation and results were contextualized to the Robocup Middle Size League scenario.

2013

Thermographic and Visible Spectrum Camera Calibration for Marine Robotic Target Detection

Autores
Dias, A; Bras, C; Martins, A; Almeida, J; Silva, E;

Publicação
2013 OCEANS - SAN DIEGO

Abstract
In the context of detection, location and tracking of human targets with combination of thermographic and visible cameras, this paper addresses the problem of geometric calibration of thermographic and visible spectrum cameras necessary for the stereo perception of targets in the robot frame. A method for precise geometric calibration of thermographic and visible cameras in the autonomous surface vehicle (ASV) ROAZ II is presented. The method combine the utilization of special patterns for intrinsic calibration of thermographic cameras, with the usage of a high-resolution 3D laser scanner for the extrinsic calibration, relating the cameras frames with the robot frame. Calibration process results are presented and analyzed.

  • 125
  • 181