2024
Autores
de Arriba-Pérez, F; García-Méndez, S; Leal, F; Malheiro, B; Burguillo-Rial, JC;
Publicação
INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 1, WORLDCIST 2023
Abstract
The latest technological advances drive the emergence of countless real-time data streams fed by users, sensors, and devices. These data sources can be mined with the help of predictive and classification techniques to support decision-making in fields like e-commerce, industry or health. In particular, stream-based classification is widely used to categorise incoming samples on the fly. However, the distribution of samples per class is often imbalanced, affecting the performance and fairness of machine learning models. To overcome this drawback, this paper proposes Bplug, a balancing plug-in for stream-based classification, to minimise the bias introduced by data imbalance. First, the plugin determines the class imbalance degree and then synthesises data statistically through non-parametric kernel density estimation. The experiments, performed with real data from Wikivoyage and Metro of Porto, show that Bplug maintains inter-feature correlation and improves classification accuracy. Moreover, it works both online and offline.
2024
Autores
Cardani, CG; Couzyn, C; Degouilles, E; Benner, JM; Engst, JA; Duarte, AJ; Malheiro, B; Ribeiro, C; Justo, J; Silva, MF; Ferreira, P; Guedes, P;
Publicação
INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 2, WORLDCIST 2023
Abstract
Involving people in urban planning offers many benefits, but current methods are failing to get a large number of citizens to participate. People have a high participation barrier when it comes to public participation in urban planning - as it requires a lot of time and initiative, only a small non-diverse group of citizens take part in governmental initiatives. In this paper, a product is developed to make it as easy as possible for citizens to get involved in construction projects in their community at an early stage. As a solution, a public screen is proposed, which offers citizens the opportunity to receive information, view 3D models, vote and comment at the site of the construction project via smartphone - the solution was named Parcitypate. To explain the functions of the product, a prototype was created and tested. In addition, concepts for branding, marketing, ethics, and sustainability are presented.
2023
Autores
García-Méndez, S; Leal, F; Malheiro, B; Burguillo-Rial, JC;
Publicação
IEEE ACCESS
Abstract
Wiki articles are created and maintained by a crowd of editors, producing a continuous stream of reviews. Reviews can take the form of additions, reverts, or both. This crowdsourcing model is exposed to manipulation since neither reviews nor editors are automatically screened and purged. To protect articles against vandalism or damage, the stream of reviews can be mined to classify reviews and profile editors in real-time. The goal of this work is to anticipate and explain which reviews to revert. This way, editors are informed why their edits will be reverted. The proposed method employs stream-based processing, updating the profiling and classification models on each incoming event. The profiling uses side and content-based features employing Natural Language Processing, and editor profiles are incrementally updated based on their reviews. Since the proposed method relies on self-explainable classification algorithms, it is possible to understand why a review has been classified as a revert or a non-revert. In addition, this work contributes an algorithm for generating synthetic data for class balancing, making the final classification fairer. The proposed online method was tested with a real data set from Wikivoyage, which was balanced through the aforementioned synthetic data generation. The results attained near-90% values for all evaluation metrics (accuracy, precision, recall, and F-measure).
2017
Autores
Lönnqvist, E; Cullié, M; Bermejo, M; Tootsi, M; Smits, S; Duarte, AJ; Malheiro, B; Ribeiro, C; Ferreira, F; Silva, MF; Ferreira, P; Guedes, P;
Publicação
Teaching and Learning in a Digital World - Proceedings of the 20th International Conference on Interactive Collaborative Learning - Volume 1, Budapest, Hungary, 27-29 September 2017
Abstract
2025
Autores
Leal, F; Veloso, B; Malheiro, B; Burguillo, JC;
Publicação
EXPERT SYSTEMS
Abstract
Crowdsourced data streams are popular and extremely valuable in several domains, namely in tourism. Tourism crowdsourcing platforms rely on past tourist and business inputs to provide tailored recommendations to current users in real time. The continuous, open, dynamic and non-curated nature of the crowd-originated data demands specific stream mining techniques to support online profiling, recommendation, change detection and adaptation, explanation and evaluation. The sought techniques must, not only, continuously improve and adapt profiles and models; but must also be transparent, overcome biases, prioritize preferences, master huge data volumes and all in real time. This article surveys the state-of-art of adaptive and explainable stream recommendation, extends the taxonomy of explainable recommendations from the offline to the stream-based scenario, and identifies future research opportunities.
1995
Autores
Malheiro, B; Oliveira, E;
Publicação
Environmental Informatics - EUROCOURSES
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.