2023
Autores
Gallarreta, A; Grasel, B; Gonzalez Ramos, J; Fernandez, I; Angulo, I; Arrinda, A; La Vega, D; Baptista, J; Tragner, M;
Publicação
2023 International Conference on Smart Energy Systems and Technologies, SEST 2023
Abstract
This paper studies the suitability of the novel Light Quasi-Peak (Light-QP) measurement method to assess the high-frequency disturbances generated by the vehicle-to-grid (V2G) technology, by comparing the performance of the new method with respect to the standardized CISPR 16-1-1 method. For this purpose, the quasi-peak (QP) outputs obtained by both methods are compared, a statistical study of the differences in the spectral results is performed and the computational requirements of the two methods are evaluated. This paper demonstrates that the novel Light-QP method is a lighter technique to assess the QP amplitude of the conducted disturbances, as it requires 10 times less Fourier transforms and at least less than 90 % storage to process a 3 s length measurement. Furthermore, the QP outputs provided by the Light-QP method are comparable to the outputs of a digital implementation of the CISPR 16, since the differences in results are within the uncertainty limits defined in IEC 61000-4-30 standard for power-quality instruments in the CISPR Band A. The Light-QP method could be essential for the detection of the V2G disturbances in low-voltage grid, since it can be easily implemented in inexpensive power quality measurement instruments. The Light-QP method was presented in the IEC SC77 A WG9 for its possible inclusion in the next edition of IEC 61000-4-30 standard. © 2023 IEEE.
2023
Autores
Duro, F; Serodio, C; Baptista, J;
Publicação
Proceedings - 2023 IEEE International Conference on Environment and Electrical Engineering and 2023 IEEE Industrial and Commercial Power Systems Europe, EEEIC / I and CPS Europe 2023
Abstract
The environmental protection and energy conservation concerns have spurred the development of new solutions in the automotive industry. This has led to the popularity of electric vehicles (EV) and Plugin hybrid electric vehicles (PHEV). On the other hand, this surge in popularity has created a challenge for the development of various new technologies and services, such as charging technology systems and stations. However, unidirectional charging offers hardware simplicity and easier interconnection and enable a G2V model, while bidirectional charging solutions enables G2V and V2G solutions, which can help stabilize AC power by utilizing the energy stored in the battery. This paper presents an EV battery charging system that uses a compact and straightforward bidirectional converter. The system can draw power from either traditional electrical sources or sustainable energy sources like photovoltaic modules, with the option of using lithium rechargeable batteries and supercapacitors as an Energy Storage System (ESS). Several Simulink simulations were conducted to investigate battery behavior under different power sources, and the results show the good effectiveness of the developed system, allowing it to be used in more comprehensive studies in the field of EV charging. © 2023 IEEE.
2023
Autores
Rasul, A; Baptista, J;
Publicação
Proceedings - 2023 IEEE International Conference on Environment and Electrical Engineering and 2023 IEEE Industrial and Commercial Power Systems Europe, EEEIC / I and CPS Europe 2023
Abstract
Silicon carbide (SiC) switching devices have an enormous influence on power electronic systems, entitled to extraordinary outcomes attained in low switching and conduction losses. The research work exploration is to develop and analyze the interleaved SiC full-bridge converter. It is subjected to analyze the performance of silicon carbide (SiC) module-based converter design which can offer a power of 42kW. Power conversion is done between DC/AC by using a standard 1200V single-phase SiC module from Semikron [1]. The SiC-MOSFETs are controlled by an adequate galvanically isolated gate driver circuit. Several gate drivers' functionalities are added in the converter design for optimized performance and safe operation. The features include split turn-on/turn-off outputs, desaturation and active miller-clamp. The DC-link capacitors are designed to cancel the input ripple current and stabilizing the source voltage. The interleaving (180° phase-shift between the legs) helps to reduce ripple currents both, in the input capacitor as well as at the output. At the output coupled inductors are providing suppression of transverse currents between the interleaved legs. The coupled inductors help to reduce the size of the filter in the case of DC-DC or DC-AC grid-tie inverters. © 2023 IEEE.
2023
Autores
Vidal, D; Pinto, T; Baptista, J;
Publicação
Distributed Computing and Artificial Intelligence, Special Sessions I, 20th International Conference, Guimaraes, Portugal, 12-14 July 2023.
Abstract
In recent years, sustainable power supply has become a necessary asset for the daily survival and development of populations. The incentive to the use of renewable energies has been increasing worldwide. Solar energy, in particular, is widespreading fast in countries whose location allows to obtain excellent radiation conditions. In this work, autonomous photovoltaic (PV) systems are studied, having as main aim its application in the supply of urban loads. For this purpose, a PV system is designed to supply the decorative lighting of a monument. Particular emphasis is given to studying the behavior of the energy storage system. The achieved results demonstrate that the use of this type of systems is a very efficient solution for the municipalities to supply several urban loads such as fountains, traffic lights, decorative lighting, among others. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
2023
Autores
Araújo, I; Cerveira, A; Baptista, J;
Publicação
Renewable Energy and Power Quality Journal
Abstract
2012
Autores
Ribeiro, C; Pinto, T; Vale, Z;
Publicação
2012 23RD INTERNATIONAL WORKSHOP ON DATABASE AND EXPERT SYSTEMS APPLICATIONS (DEXA)
Abstract
Power systems have been through deep changes in recent years, namely with the operation of competitive electricity markets in the scope and the increasingly intensive use of renewable energy sources and distributed generation. This requires new business models able to cope with the new opportunities that have emerged. Virtual Power Players (VPPs) are a new player type which allows aggregating a diversity of players (Distributed Generation (DG), Storage Agents (SA), Electrical Vehicles (V2G) and consumers), to facilitate their participation in the electricity markets and to provide a set of new services promoting generation and consumption efficiency, while improving players` benefits. A major task of VPPs is the remuneration of generation and services (maintenance, market operation costs and energy reserves), as well as charging energy consumption. This paper proposes a model to implement fair and strategic remuneration and tariff methodologies, able to allow efficient VPP operation and VPP goals accomplishment in the scope of electricity markets.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.