Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Clara Sofia Gouveia

2012

Smart grids with electric vehicles: The initial findings of project reive: A project funded by the Portuguese Ministry of Economy, Innovation and Development

Autores
Soares, FJ; Gouveia, C; Pereira Barbeiro, PN; Rocha Almeida, PM; Moreira, C; Pecas Lopes, JA;

Publicação
SMARTGREENS 2012 - Proceedings of the 1st International Conference on Smart Grids and Green IT Systems

Abstract
This paper provides a general overview of the initial developments in the REIVE project (Smart Grids with Electric Vehicles). The main focus of the project is on smart grid infrastructures for large scale integration of EV and micro-generation units. It is a natural evolution of the InovGrid project promoted by the EDP Distribuição - the Portuguese Distribution Network Operator - and allows the development of seminal concepts and enabling technological developments within the Smart Grid paradigm. This paper presents the management and control architecture developed to allow electric vehicle integration in smart grid operation. Additionally, it presents the major impacts in distribution grids of the simultaneous deployment of electric vehicles, micro-generation and smart grid technologies.

2012

The merge project: Impacts of electric vehicles on the distribution system steady-state operation

Autores
Soares, FJ; Pereira Barbeiro, PN; Gouveia, C; Rocha Almeida, PM; Moreira, C; Pecas Lopes, JA;

Publicação
SMARTGREENS 2012 - Proceedings of the 1st International Conference on Smart Grids and Green IT Systems

Abstract
This paper describes the main results of the MERGE project relative to Electric Vehicle (EV) charging strategies and the impacts of EV integration on the steady-state grid operation. MERGE is a €4.5m, collaborative research project supported by the European Commission's Seventh Framework Programme (FP7). The consortium includes utilities, regulators, commercial organisations and universities with interests in the power generation, automotive, electronic commerce and hybrid and electric vehicle sectors across the entire European Union (EU). One of the MERGE project missions is to evaluate the impacts that EV will have on EU electric power systems, exploring EV and SmartGrid/MicroGrid simultaneous deployment, together with renewable energy increase, to achieve CO 2 emission reduction through the identification of enabling technologies and advanced control approaches. The work presented proposes three charging strategies, dumb charging, multiple price tariffs and smart charging, and uses EV integration scenarios of adherence to these charging schemes. The resulting scenarios are tested using an algorithm coded with Python and using PSS/E, created within the MERGE framework to study EU grids steady-state behaviour. Additionally, the critical mass of EV adherence to smart charging schemes that brings positive impacts to the distribution grids operation was also evaluated.

2023

Flexibility Modeling and Trading in Renewable Energy Communities

Autores
Agrela, J; Rezende, I; Soares, T; Gouveia, C; Silva, R; Villar, J;

Publicação
2023 19TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM

Abstract
This work presents an approach to the flexibility of energy consumption in Renewable Energy Communities (RECs). A two-stage model for quantifying the flexibility provided by the domestic energy resources operation and its negotiation in a market platform is proposed. In stage 1, the optimal consumption of each prosumer is determined, as well as the respective technical flexibility of their resources, namely the maximum and minimum resource operation limits. In stage 2, this technical flexibility is offered in a local flexibility-only market structure, in which both the DSO and the prosumers can present their flexibility needs and requirements. The flexibility selling and buying bids of the prosumers participating in the market are priced based on their base tariff, which is the energy cost of the prosumers corresponding to their optimal schedule of the first stage when no flexibility is provided. Therefore, providing flexibility is an incentive to reduce their energy bill or increase their utility, encouraging their participation in the local flexibility market.

2023

Operation and simulation of a renewable energy community based on a local post-delivery pool market

Autores
Tavares, T; Mello, J; Silva, R; Moreno, A; Garcia, A; Pacheco, J; Pereira, C; Amorim, M; Gouveia, C; Villar, J;

Publicação
2023 19TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM

Abstract
This paper presents an innovative digital platform for managing energy communities with self-consumption and energy trading in a local electricity market. Its architecture is based on micro-services, such as the energy transaction service, the settlement service to compute the financial compensations among community members for the energy transacted, or a resource sizing service. This approach enables the platform to be more efficient and scalable, making easier to incorporate new functionalities while maintaining a secure community and energy transactions management. The transactions and settlement procedures, adapted to the Portuguese regulation, are described, and the results of the platform operating a post-delivery pool market are presented and analyzed. This paper contributes to the understanding and improvement of renewable energy communities' business models and management, offering insights for policymakers, researchers, and practitioners in the field.

2022

ML-Assistant for Human Operators to Solve Faults and Classify Events Complexity in Electrical Grids

Autores
Campos, V; Andrade, R; Bessa, J; Gouveia, C;

Publicação
IET Conference Proceedings

Abstract
Nowadays, human operators at grid control centers analyze a large volume of alarm information during outage’s events, and must act fast to restore the service. Currently, after the occurrence of short-circuit faults and its isolation via feeder protection, fault location and isolation is achieved via remotely controlled switching actions defined by operator’s experience. Despite operator’s experience and knowledge, this makes the process sub-optimal and slower. This paper proposes two novel machine learning-based algorithms to assist human operator decisions, aiming to: i) classify the complexity of a fault occurrence (Occurrences Classifier) based on its alarm events; ii) provide fast insights to the operator on how to solve it (Data2Actions). The Occurrences Classifier takes the alarm information of an occurrence and classifies it as a “simple” or “complex” occurrence. The Data2Actions takes a sequence of alarm information from the occurrence and suggests to the operator the more adequate sequence of switching actions to isolate the fault section on the overhead medium voltage line. Both algorithms were tested in real data from a Distribution System Operator between 2017 and 2020, and showed i) an accuracy of 86% for the Data2Actions, and ii) the Occurrences Classifier reached 74% accuracy for “simple” occurrences and 58% for “complex” ones, leading to an overall 65% accuracy. © 2022 IET Conference Proceedings. All rights reserved.

2023

A Three-Stage Model to Manage Energy Communities, Share Benefits and Provide Local Grid Services

Autores
Rocha, R; Silva, R; Mello, J; Faria, S; Retorta, F; Gouveia, C; Villar, J;

Publicação
ENERGIES

Abstract
This paper proposes a three-stage model for managing energy communities for local energy sharing and providing grid flexibility services to tackle local distribution grid constraints. The first stage addresses the minimization of each prosumer's individual energy bill by optimizing the schedules of their flexible resources. The second stage optimizes the energy bill of the whole energy community by sharing the prosumers' energy surplus internally and re-dispatching their batteries, while guaranteeing that each prosumer's new energy bill is always be equal to or less than the bill that results for this prosumer from stage one. This collective optimization is designed to ensure an additional collective benefit, without loss for any community member. The third stage, which can be performed by the distribution system operator (DSO), aims to solve the local grid constraints by re-dispatching the flexible resources and, if still necessary, by curtailing local generation or consumption. Stage three minimizes the impact on the schedule obtained at previous stages by minimizing the loss of profit or utility for all prosumers, which are furthermore financially compensated accordingly. This paper describes how the settlement should be performed, including the allocation coefficients to be sent to the DSO to determine the self-consumed and supplied energies of each peer. Finally, some case studies allow an assessment of the performance of the proposed methodology. Results show, among other things, the potential benefits of allowing the allocation coefficients to take negative values to increase the retail market competition; the importance of stage one or, alternatively, the need for a fair internal price to avoid unfair collective benefit sharing among the community members; or how stage three can effectively contribute to grid constraint solving, profiting first from the existing flexible resources.

  • 11
  • 11