2023
Autores
Pilarski, L; Luiz, E; Braun, J; Nakano, Y; Pinto, V; Costa, P; Lima, J;
Publicação
International Conference on Electrical, Computer, Communications and Mechatronics Engineering, ICECCME 2023
Abstract
Artificial Intelligence has been introduced in many applications, namely in artificial vision-based systems with object detection tasks. This paper presents an object localization system with a motivation to use it in autonomous mobile robots at robotics competitions. The system aims to allow robots to accomplish their tasks more efficiently. Object detection is performed using a camera and artificial intelligence based on the YOLOv4 Tiny detection model. An algorithm was developed that uses the data from the system to estimate the parameters of location, distance, and orientation based on the pinhole camera model and trigonometric modelling. It can be used in smart identification procedures of objects. Practical tests and results are presented, constantly locating the objects and with errors between 0.16 and 3.8 cm, concluding that the object localization system is adequate for autonomous mobile robots. © 2023 IEEE.
2023
Autores
Silva, AS; Lima, J; Pereira, A; Silva, AMT; Gomes, HT;
Publicação
COMPUTATIONAL SCIENCE AND ITS APPLICATIONS-ICCSA 2023 WORKSHOPS, PART VIII
Abstract
Studies dealing with route optimization have received considerable attention in recent years due to the increased demand for transportation services. For decades, scholars have developed robust algorithms designed to solve various Vehicle Routing Problems (VRP). In most cases, the focus is to present an algorithm that can overcome the shortest distances reported in other studies. On the other hand, execution time is also an important parameter that may limit the feasibility of the utilization in real scenarios for some applications. For this reason, in this work, a Guided Local Search (GLS) metaheuristic available in open-source OR-Tools will be tested to solve the Augerat instances of Capacitated Vehicle Routing Problems (CVRP). The stop criterion used here is the execution time, going from 1 s (standard) to 10 s, with a last run of 360 s. The numerical results demonstrate that increasing the execution time returns significant improvement in distance optimization. However, the optimization found considering high execution times can be expensive in terms of time, and not feasible for situations demanding faster algorithms, such as in Dynamic Vehicle Routing Problems (DVRP). Nonetheless, the GLS has proven to be a versatile algorithm for use where distance optimization is the main priority (high execution times) and in cases where faster algorithms are required (low execution times).
2024
Autores
de Castro, GGR; Santos, TMB; Andrade, FAA; Lima, J; Haddad, DB; Honorio, LD; Pinto, MF;
Publicação
MACHINES
Abstract
This research presents a cooperation strategy for a heterogeneous group of robots that comprises two Unmanned Aerial Vehicles (UAVs) and one Unmanned Ground Vehicles (UGVs) to perform tasks in dynamic scenarios. This paper defines specific roles for the UAVs and UGV within the framework to address challenges like partially known terrains and dynamic obstacles. The UAVs are focused on aerial inspections and mapping, while UGV conducts ground-level inspections. In addition, the UAVs can return and land at the UGV base, in case of a low battery level, to perform hot swapping so as not to interrupt the inspection process. This research mainly emphasizes developing a robust Coverage Path Planning (CPP) algorithm that dynamically adapts paths to avoid collisions and ensure efficient coverage. The Wavefront algorithm was selected for the two-dimensional offline CPP. All robots must follow a predefined path generated by the offline CPP. The study also integrates advanced technologies like Neural Networks (NN) and Deep Reinforcement Learning (DRL) for adaptive path planning for both robots to enable real-time responses to dynamic obstacles. Extensive simulations using a Robot Operating System (ROS) and Gazebo platforms were conducted to validate the approach considering specific real-world situations, that is, an electrical substation, in order to demonstrate its functionality in addressing challenges in dynamic environments and advancing the field of autonomous robots.
2024
Autores
Rebelo, PM; Lima, J; Soares, SP; Oliveira, PM; Sobreira, H; Costa, P;
Publicação
SENSORS
Abstract
The flexibility and versatility associated with autonomous mobile robots (AMR) have facilitated their integration into different types of industries and tasks. However, as the main objective of their implementation on the factory floor is to optimize processes and, consequently, the time associated with them, it is necessary to take into account the environment and congestion to which they are subjected. Localization, on the shop floor and in real time, is an important requirement to optimize the AMRs' trajectory management, thus avoiding livelocks and deadlocks during their movements in partnership with manual forklift operators and logistic trains. Threeof the most commonly used localization techniques in indoor environments (time of flight, angle of arrival, and time difference of arrival), as well as two of the most commonly used indoor localization methods in the industry (ultra-wideband, and ultrasound), are presented and compared in this paper. Furthermore, it identifies and compares three industrial indoor localization solutions: Qorvo, Eliko Kio, and Marvelmind, implemented in an industrial mobile platform, which is the main contribution of this paper. These solutions can be applied to both AMRs and other mobile platforms, such as forklifts and logistic trains. In terms of results, the Marvelmind system, which uses an ultrasound method, was the best solution.
2024
Autores
Braun, J; Baidi, K; Bonzatto, L; Berger, G; Pinto, M; Kalbermatter, RB; Klein, L; Grilo, V; Pereira, AI; Costa, P; Lima, J;
Publicação
SYNERGETIC COOPERATION BETWEEN ROBOTS AND HUMANS, VOL 1, CLAWAR 2023
Abstract
Robotics competitions are highly strategic tools to engage and motivate students, cultivating their curiosity and enthusiasm for technology and robotics. These competitions encompass various disciplines, such as programming, electronics, control systems, and prototyping, often beginning with developing a mobile platform. This paper focuses on designing and implementing an omnidirectional mecanum platform, encompassing aspects of mechatronics, mechanics, electronics, kinematics models, and control. Additionally, a simulation model is introduced and compared with the physical robot, providing a means to validate the proposed platform.
2024
Autores
Kalbermatter, RB; Franco, T; Pereira, AI; Valente, A; Soares, SP; Lima, J;
Publicação
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, PT I, OL2A 2023
Abstract
People are living longer, promoting new challenges in healthcare. Many older adults prefer to age in their own homes rather than in healthcare institutions. Portugal has seen a similar trend, and public and private home care solutions have been developed. However, age-related pathologies can affect an elderly person's ability to perform daily tasks independently. Ambient Assisted Living (AAL) is a domain that uses information and communication technologies to improve the quality of life of older adults. AI-based fall detection systems have been integrated into AAL studies, and posture estimation tools are important for monitoring patients. In this study, the OpenCV and the YOLOv7 machine learning framework are used to develop a fall detection system based on posture analysis. To protect patient privacy, the use of a thermal camera is proposed to prevent facial recognition. The developed system was applied and validated in the real scenario.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.