Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Inês Dutra

2023

An Online Anomaly Detection Approach for Fault Detection on Fire Alarm Systems

Autores
Tome, ES; Ribeiro, RP; Dutra, I; Rodrigues, A;

Publicação
SENSORS

Abstract
The early detection of fire is of utmost importance since it is related to devastating threats regarding human lives and economic losses. Unfortunately, fire alarm sensory systems are known to be prone to failures and frequent false alarms, putting people and buildings at risk. In this sense, it is essential to guarantee smoke detectors' correct functioning. Traditionally, these systems have been subject to periodic maintenance plans, which do not consider the state of the fire alarm sensors and are, therefore, sometimes carried out not when necessary but according to a predefined conservative schedule. Intending to contribute to designing a predictive maintenance plan, we propose an online data-driven anomaly detection of smoke sensors that model the behaviour of these systems over time and detect abnormal patterns that can indicate a potential failure. Our approach was applied to data collected from independent fire alarm sensory systems installed with four customers, from which about three years of data are available. For one of the customers, the obtained results were promising, with a precision score of 1 with no false positives for 3 out of 4 possible faults. Analysis of the remaining customers' results highlighted possible reasons and potential improvements to address this problem better. These findings can provide valuable insights for future research in this area.

2017

Preface

Autores
Barbosa, J; Camacho, R; Dutra, I; Marques, O;

Publicação
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Abstract

2023

Improving the Characterization and Comparison of Football Players with Spatial Flow Motifs

Autores
Barbosa, A; Ribeiro, P; Dutra, I;

Publicação
COMPLEX NETWORKS AND THEIR APPLICATIONS XI, COMPLEX NETWORKS 2022, VOL 2

Abstract
Association Football is probably the world's most popular sport. Being able to characterise and compare football players is therefore a very important and impactful task. In this work we introduce spatial flow motifs as an extension of previous work on this problem, by incorporating both temporal and spatial information into the network analysis of football data. Our approach considers passing sequences and the role of the player in those sequences, complemented with the physical position of the field where the passes occurred. We provide experimental results of our proposed methodology on real-life event data from the Italian League, showing we can more accurately identify players when compared to using purely topological data.

2018

Bioinformatics Computational Cluster Batch Task Profiling with Machine Learning for Failure Prediction

Autores
Harrison, C; Kirkpatrick, CR; Dutra, I;

Publicação
CoRR

Abstract

2018

Driven tabu search: a quantum inherent optimisation

Autores
Silva, C; Dutra, I; Dahlem, MS;

Publicação
CoRR

Abstract

2024

Integração e vivências solidárias no ensino superior: contributos de programas de mentoria interpares

Autores
Teresa Medina; Lopes, G.; Ines Dutra; Marta Correia da Silva; Barros, Renata; Teresa Duarte;

Publicação

Abstract

  • 19
  • 19