Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Inês Dutra

2024

Proposal and Definition of a Novel Intelligent System for the Diagnosis of Bipolar Disorder Based on the Use of Quick Response Codes Containing Single Nucleotide Polymorphism Data

Autores
Pinheira, AG; Casal Guisande, M; Comesaña Campos, A; Dutra, I; Nascimento, C; Cerqueiro Pequeño, J;

Publicação
Lecture Notes in Educational Technology

Abstract
Bipolar Disorder (BD) is a chronic and severe psychiatric illness presenting with mood alterations, including manic, hypomanic, and depressive episodes. Due to the high clinical heterogeneity and lack of biological validation, both treatment and diagnosis of BD remain problematic and challenging. In this context, this paper proposes a novel intelligent system applied to the diagnosis of BD. First, each patient’s single nucleotide polymorphism (SNP) data is represented by QR codes, which reduces the high dimensionality of the problem and homogenizes the data representation. For the initial tests of the system, the Wellcome Trust Case Control Consortium (WTCCC) dataset was used. The preliminary results are encouraging, with an AUC value of 0.82 and an accuracy of 82%, correctly classifying all cases and most controls. This approach reduces the dimensionality of large amounts of data and can help improve diagnosis and deliver the right treatment to the patient. Furthermore, the architecture of the system is versatile and could be adapted and used to diagnose other diseases where there is also high dimensionality. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.

2022

Sensor data modeling with Bayesian networks

Autores
Silva, C; Rodrigues, A; Jorge, A; Dutra, I;

Publicação
Proceedings of the 2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology, IAICT 2022

Abstract
This research aims to extract knowledge of sensors behavior resorting to Bayesian networks (BNs) and dynamic Bayesian networks (DBNs), a time-based BN version. These two types of models belong to the group of probabilistic graphical models (PGMs). These graphical models can be very useful to get insights from data in order to improve sensor capabilities in the industry of fire detection systems, since it can provide the conditional dependence structure among various sensor variables. Relevant sensors with fire alerts were selected and studied at device level. We conduct a data fusion analysis since we deal with heterogeneous data sources, Remote Alert (RA) with sensor states and Condition Monitoring (CM) with numerical data. To achieve an accurate fusion of the data, a pipeline was designed to align both sources of data in a regular time interval. Furthermore, a change point detection (CPD) method was used to discretize the numerical variables. In addition, one-hot encoding was used to create binarized datasets and combine all data (RA+CM). Our modeling helps understanding the dependencies among the sensor variables, highlighting that individual devices of the same type can have a very different probabilistic behavior along the time, probably due to be installed in distinct regions. Moreover, the models helped capturing strange probabilistic sensor behavior such as a low probability of a NORMAL state happening given that states FIRE, WARNING and TROUBLE did not happen. © 2022 IEEE.

2022

AutoSW: A new automated sliding window-based change point detection method for sensor data

Autores
Nejad, EB; Silva, C; Rodrigues, A; Jorge, A; Dutra, I;

Publicação
Proceedings of the 2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology, IAICT 2022

Abstract
Change point detection methods try to find any sudden changes in the patterns and features of a given time series. In this paper a new change point detection method is presented, where the window width is automatically calculated. The proposed algorithm, AutoSW, is based on a Sliding Window search method of the Python ruptures package and uses a subset of statistical concepts to compute a possibly optimal window width. The proposed algorithm is compared with some other popular methods such as PELT using different real-world and synthetic time series. Results show that AutoSW can perform better than PELT producing a better set of change points in the time series tested. © 2022 IEEE.

2024

HAL 9000: a Risk Manager for ITSs

Autores
Freitas, T; Novo, C; Soares, J; Dutra, I; Correia, ME; Shariati, B; Martins, R;

Publicação
2024 IEEE 6TH INTERNATIONAL CONFERENCE ON TRUST, PRIVACY AND SECURITY IN INTELLIGENT SYSTEMS, AND APPLICATIONS, TPS-ISA

Abstract
HAL 9000 is an Intrusion Tolerant Systems (ITSs) Risk Manager, which assesses configuration risks against potential intrusions. It utilizes gathered threat knowledge and remains operational, even in the absence of updated information. Based on its advice, the ITSs can dynamically and proactively adapt to recent threats to minimize and mitigate future intrusions from malicious adversaries. Our goal is to reduce the risk linked to the exploitation of recently uncovered vulnerabilities that have not been classified and/or do not have a script to reproduce the exploit, considering the potential that they may have already been exploited as zero-day exploits. Our experiments demonstrate that the proposed solution can effectively learn and replicate National Vulnerability Database's evaluation process with 99% accuracy.

2023

Predicting Hard Disk Drive faults, failures and associated misbehavior's

Autores
Harrison, C; Balu, H; Dutra, I;

Publicação
2023 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS, IPDPSW

Abstract
Magnetic hard disk drives continue to be heavily used to store global information. However, due to the physical characteristics these components fatigue and fail, sometimes in unexpected ways. A failing hard disk can cause problems to a group of hard disks and result in suboptimal performance which impacts cloud providers. To address failures, redundancies are put in place, but these redundancies have a high cost. Utilizing Machine learning we identify predictive failure features within a hard disk vendor's Hard Disk Drive Model line which can be used as an early failure prediction method which may be used to reduce redundancies in cloud storage infrastructures.

2023

Engaging with Researchers and Raising Awareness of FAIR and Open Science through the FAIR+ Implementation Survey Tool (FAIRIST)

Autores
Kirkpatrick, CR; Coakley, KL; Christopher, J; Dutra, I;

Publicação
Data Sci. J.

Abstract
Seven years after the seminal paper on FAIR was published, that introduced the concept of making research outputs Findable, Accessible, Interoperable, and Reusable, researchers still struggle to understand how to implement the principles. For many researchers, FAIR promises long-term benefits for near-term effort, requires skills not yet acquired, and is one more thing in a long list of unfunded mandates and onerous requirements for scientists. Even for those required to, or who are convinced that they must make time for FAIR research practices, their preference is for just-in-time advice properly sized to the scientific artifacts and process. Because of the generality of most FAIR implementation guidance, it is difficult for a researcher to adjust to the advice according to their situation. Technological advances, especially in the area of artificial intelligence (AI) and machine learning (ML), complicate FAIR adoption, as researchers and data stewards ponder how to make software, workflows, and models FAIR and reproducible. The FAIR+ Implementation Survey Tool (FAIRIST) mitigates the problem by integrating research requirements with research proposals in a systematic way. FAIRIST factors in new scholarly outputs, such as nanopublications and notebooks, and the various research artifacts related to AI research (data, models, workflows, and benchmarks). Researchers step through a self-serve survey process and receive a table ready for use in their data management plan (DMP) and/or work plan. while gaining awareness of the FAIR Principles and Open Science concepts. FAIRIST is a model that uses part of the proposal process as a way to do outreach, raise awareness of FAIR dimensions and considerations, while providing timely assistance for competitive proposals. © 2023, Ubiquity Press. All rights reserved.

  • 11
  • 19