Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Alípio Jorge

2011

Mining Association Rules for Label Ranking

Autores
de Sa, CR; Soares, C; Jorge, AM; Azevedo, P; Costa, J;

Publicação
ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT II: 15TH PACIFIC-ASIA CONFERENCE, PAKDD 2011

Abstract
Recently, a number of learning algorithms have been adapted for label ranking, including instance-based and tree-based methods. In this paper, we propose an adaptation of association rules for label ranking. The adaptation, which is illustrated in this work with APRIORI Algorithm, essentially consists of using variations of the support and confidence measures based on ranking similarity functions that are suitable for label ranking. We also adapt the method to make a prediction from the possibly conflicting consequents of the rules that apply to an example. Despite having made our adaptation from a very simple variant of association rules for classification, the results clearly show that the method is making valid predictions. Additionally, they show that it competes well with state-of-the-art label ranking algorithms.

2000

Integrating rules and cases in learning via case explanation and paradigm shift

Autores
Lopes, AD; Jorge, A;

Publicação
ADVANCES IN ARTIFICIAL INTELLIGENCE

Abstract
In this article we discuss in detail two techniques for rule and case integration. Case-based learning is used when the rule language is exhausted. Initially, all the examples are used to induce a set of rules with satisfactory quality. The examples that are not covered by these rules are then handled as cases. The case-based approach used also combines rules and cases internally. Instead of only storing the cases as provided, it has a learning phase where, for each case, it constructs and stores a set of explanations with support and confidence above given thresholds. These explanations have different levels of generality and the maximally specific one corresponds to the case itself. The same case may have different explanations representing different perspectives of the case. Therefore, to classify a new case, it looks for relevant stored explanations applicable to the new case. The different possible views of the case given by the explanations correspond to considering different sets of conditions/features to analyze the case. In other words, they lead to different ways to compute similarity between known cases/explanations and the new case to be classified (as opposed to the commonly used fixed metric).

2012

Combining usage and content in an online music recommendation system for music in the long-tail

Autores
Domingues, MA; Gouyon, F; Jorge, AM; Leal, JP; Vinagre, J; Lemos, L; Sordo, M;

Publicação
WWW'12 - Proceedings of the 21st Annual Conference on World Wide Web Companion

Abstract
In this paper we propose a hybrid music recommender system, which combines usage and content data. We describe an online evaluation experiment performed in real time on a commercial music web site, specialised in content from the very long tail of music content. We compare it against two stand-alone recommenders, the first system based on usage and the second one based on content data. The results show that the proposed hybrid recommender shows advantages with respect to usage- and content-based systems, namely, higher user absolute acceptance rate, higher user activity rate and higher user loyalty. Copyright is held by the International World Wide Web Conference Committee (IW3C2).

2003

Automatic selection of table areas in documents for information extraction

Autores
Silva, ACE; Jorge, A; Torgo, L;

Publicação
PROGRESS IN ARTIFICIAL INTELLIGENCE

Abstract
The information contained in companies' financial statements is valuable to several users. Much of the relevant information in such documents is contained in tables and is currently mainly extracted by hand. We propose a method that accomplishes a prior step of the task of automatically extracting information from tables in documents: selecting the lines that are likely to belong to tables. Our method has been developed by empirically analyzing a set of Portuguese companies' financial statements using statistical and data mining techniques. Empirical evaluation indicates that more than 99% of table lines are selected after discarding at least 50% of all lines. The method can cope with the complexity of styles used in assembling information on paper and adapt its performance accordingly, thus maximizing its results.

2004

Hierarchical clustering for thematic browsing and summarization of large sets of association rules

Autores
Jorge, A;

Publicação
Proceedings of the Fourth SIAM International Conference on Data Mining

Abstract
In this paper we propose a method for grouping and summarizing large sets of association rules according to the items contained in each rule. We use hierarchical clustering to partition the initial rule set into thematically coherent subsets. This enables the summarization of the rule set by adequately choosing a representative rule for each subset, and helps in the interactive exploration of the rule model by the user. We define the requirements of our approach, and formally show the adequacy of the chosen approach to our aims. Rule clusters can also be used to infer novel interest measures for the rules. Such measures are based on the lexicon of the rules and are complementary to measures based on statistical properties, such as confidence, lift and conviction. We show examples of the application of the proposed techniques.

2009

Item-Based and User-Based Incremental Collaborative Filtering for Web Recommendations

Autores
Miranda, C; Jorge, AM;

Publicação
PROGRESS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS

Abstract
In this paper we propose an incremental item-based collaborative filtering algorithm. It works with binary ratings (sometimes also called implicit ratings), as it; is typically the case in a Web environment. Our method is capable of incorporating new information in parallel with performing recommendation. New sessions and new users are used to update the similarity matrix as they appear. The proposed algorithm is compared with a non-incremental one, as well as with an incremental user-based approach, based oil an existing explicit, rating recommender. The use of techniques for working with sparse matrices oil these algorithms is also evaluated. All versions, implemented ill R, are evaluated on 5 datasets with various number of users and/or items. We observed that: Recall tends to improve when we continuously add information to the recommender model; the time spent for recommendation does not degrade; the time for updating the similarity matrix (necessary to the recommendation) is relatively low and motivates the use of the item-based incremental approach. Moreover we study how the number of items and users affects the user based and the item based approaches.

  • 34
  • 46