2024
Autores
Guimaraes, N; Campos, R; Jorge, A;
Publicação
WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY
Abstract
Large language models (LLMs) have substantially pushed artificial intelligence (AI) research and applications in the last few years. They are currently able to achieve high effectiveness in different natural language processing (NLP) tasks, such as machine translation, named entity recognition, text classification, question answering, or text summarization. Recently, significant attention has been drawn to OpenAI's GPT models' capabilities and extremely accessible interface. LLMs are nowadays routinely used and studied for downstream tasks and specific applications with great success, pushing forward the state of the art in almost all of them. However, they also exhibit impressive inference capabilities when used off the shelf without further training. In this paper, we aim to study the behavior of pre-trained language models (PLMs) in some inference tasks they were not initially trained for. Therefore, we focus our attention on very recent research works related to the inference capabilities of PLMs in some selected tasks such as factual probing and common-sense reasoning. We highlight relevant achievements made by these models, as well as some of their current limitations that open opportunities for further research.This article is categorized under:Fundamental Concepts of Data and Knowledge > Key Design Issues in DataMiningTechnologies > Artificial Intelligence
2023
Autores
Muhammad, SH; Brazdil, P; Jorge, A;
Publicação
Compendium of Neurosymbolic Artificial Intelligence
Abstract
Deep learning approaches have become popular in sentiment analysis because of their competitive performance. The downside of this approach is that they do not provide understandable explanations on how the sentiment values are calculated. Previous approaches that used sentiment lexicons for sentiment analysis can do that, but their performance is lower than deep learning approaches. Therefore, it is natural to wonder if the two approaches can be combined to exploit their advantages. In this chapter, we present a neuro-symbolic approach that combines both symbolic and deep learning approaches for sentiment analysis tasks. The symbolic approach exploits sentiment lexicon and shifter patterns-which cover the operations of inversion/reversal, intensification, and attenuation/downtoning. The deep learning approach used a pre-trained language model (PLM) to construct sentiment lexicon. Our experimental result shows that the proposed approach leads to promising results, substantially better than the results of a pure lexicon-based approach. Although the results did not reach the level of the deep learning approach, a great advantage is that sentiment prediction can be accompanied by understandable explanations. For some users, it is very important to see how sentiment is derived, even if performance is a little lower. © 2023 The authors and IOS Press. All rights reserved.
2023
Autores
Litvak, M; Rabaev, I; Campos, R; Jorge, AM; Jatowt, A;
Publicação
PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023
Abstract
The first edition of the Implicit Author Characterization from Texts for Search and Retrieval (IACT'23) aims at bringing to the forefront the challenges involved in identifying and extracting from texts implicit information about authors (e.g., human or AI) and using it in IR tasks. The IACT workshop provides a common forum to consolidate multi-disciplinary efforts and foster discussions to identify the wide-ranging issues related to the task of extracting implicit author-related information from the textual content, including novel tasks and datasets. We will also discuss the ethical implications of implicit information extraction. In addition, we announce a shared task focused on automatically determining the literary epochs of written books.
2023
Autores
Pedroto, M; Coelho, T; Jorge, A; Mendes Moreira, J;
Publicação
FRONTIERS IN NEUROLOGY
Abstract
IntroductionHereditary transthyretin amyloidosis (ATTRv amyloidosis) is a rare neurological hereditary disease clinically characterized as severe, progressive, and life-threatening while the age of onset represents the moment in time when the first symptoms are felt. In this study, we present and discuss our results on the study, development, and evaluation of an approach that allows for time-to-event prediction of the age of onset, while focusing on genealogical feature construction. Materials and methodsThis research was triggered by the need to answer the medical problem of when will an asymptomatic ATTRv patient show symptoms of the disease. To do so, we defined and studied the impact of 77 features (ranging from demographic and genealogical to familial disease history) we studied and compared a pool of prediction algorithms, namely, linear regression (LR), elastic net (EN), lasso (LA), ridge (RI), support vector machines (SV), decision tree (DT), random forest (RF), and XGboost (XG), both in a classification as well as a regression setting; we assembled a baseline (BL) which corresponds to the current medical knowledge of the disease; we studied the problem of predicting the age of onset of ATTRv patients; we assessed the viability of predicting age of onset on short term horizons, with a classification framing, on localized sets of patients (currently symptomatic and asymptomatic carriers, with and without genealogical information); and we compared the results with an out-of-bag evaluation set and assembled in a different time-frame than the original data in order to account for data leakage. ResultsCurrently, we observe that our approach outperforms the BL model, which follows a set of clinical heuristics and represents current medical practice. Overall, our results show the supremacy of SV and XG for both the prediction tasks although impacted by data characteristics, namely, the existence of missing values, complex data, and small-sized available inputs. DiscussionWith this study, we defined a predictive model approach capable to be well-understood by medical professionals, compared with the current practice, namely, the baseline approach (BL), and successfully showed the improvement achieved to the current medical knowledge.
2009
Autores
Almeida, R; Reis, LP; Jorge, AM;
Publicação
Actas da 4a Conferencia Iberica de Sistemas e Tecnologias de Informacao, CISTI 2009
Abstract
1999
Autores
Jorge, A; Andrade Lopes, Ad;
Publicação
Learning Language in Logic
Abstract
Assigning a category to a given word (tagging) depends on the particular word and on the categories (tags) of neighboring words. A theory that is able to assign tags to a given text can naturally be viewed as a recursive logic program. This article describes how iterative induction, a technique that has been proven powerful in the synthesis of recursive logic programs, has been applied to the task of part-of-speech tagging. The main strategy consists of inducing a succession T1, T2,…, Tn of theories, using in the induction of theory Ti all the previously induced theories. Each theory in the sequence may have lexical rules, context rules and hybrid ones. This iterative strategy is, to a large extent, independent of the inductive algorithm underneath. Here we consider one particular relational learning algorithm, CSC(RC), and we induce first order theories from positive examples and background knowledge that are able to successfully tag a relatively large corpus in Portuguese. © Springer-Verlag Berlin Heidelberg 2000.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.