Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Jaime Cardoso

2023

Two-Stage Framework for Faster Semantic Segmentation

Autores
Cruz, R; Silva, DTE; Goncalves, T; Carneiro, D; Cardoso, JS;

Publicação
SENSORS

Abstract
Semantic segmentation consists of classifying each pixel according to a set of classes. Conventional models spend as much effort classifying easy-to-segment pixels as they do classifying hard-to-segment pixels. This is inefficient, especially when deploying to situations with computational constraints. In this work, we propose a framework wherein the model first produces a rough segmentation of the image, and then patches of the image estimated as hard to segment are refined. The framework is evaluated in four datasets (autonomous driving and biomedical), across four state-of-the-art architectures. Our method accelerates inference time by four, with additional gains for training time, at the cost of some output quality.

2023

Deep Minutiae Fingerprint Extraction Using Equivariance Priors

Autores
Gouveia, M; Castro, E; Rebelo, A; Cardoso, JS; Patrão, B;

Publicação
Proceedings of the 16th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2023, Volume 4: BIOSIGNALS, Lisbon, Portugal, February 16-18, 2023.

Abstract

2023

Unimodal Distributions for Ordinal Regression

Autores
Cardoso, JS; Cruz, RPM; Albuquerque, T;

Publicação
CoRR

Abstract
In many real-world prediction tasks, the class labels contain information about the relative order between the labels that are not captured by commonly used loss functions such as multicategory cross-entropy. In ordinal regression, many works have incorporated ordinality into models and loss functions by promoting unimodality of the probability output. However, current approaches are based on heuristics, particularly non-parametric ones, which are still insufficiently explored in the literature. We analyze the set of unimodal distributions in the probability simplex, establishing fundamental properties and giving new perspectives to understand the ordinal regression problem. Two contributions are then proposed to incorporate the preference for unimodal distributions into the predictive model: 1) UnimodalNet, a new architecture that by construction ensures the output is a unimodal distribution, and 2) Wasserstein Regularization, a new loss term that relies on the notion of projection in a set to promote unimodality. Experiments show that the new architecture achieves top performance, while the proposed new loss term is very competitive while maintaining high unimodality.

2023

CoNIC Challenge: Pushing the Frontiers of Nuclear Detection, Segmentation, Classification and Counting

Autores
Graham, S; Vu, QD; Jahanifar, M; Weigert, M; Schmidt, U; Zhang, W; Zhang, J; Yang, S; Xiang, J; Wang, X; Rumberger, JL; Baumann, E; Hirsch, P; Liu, L; Hong, C; Avilés Rivero, AI; Jain, A; Ahn, H; Hong, Y; Azzuni, H; Xu, M; Yaqub, M; Blache, MC; Piégu, B; Vernay, B; Scherr, T; Böhland, M; Löffler, K; Li, J; Ying, W; Wang, C; Kainmueller, D; Schönlieb, CB; Liu, S; Talsania, D; Meda, Y; Mishra, P; Ridzuan, M; Neumann, O; Schilling, MP; Reischl, M; Mikut, R; Huang, B; Chien, HC; Wang, CP; Lee, CY; Lin, HK; Liu, Z; Pan, X; Han, C; Cheng, J; Dawood, M; Deshpande, S; Saad Bashir, RM; Shephard, A; Costa, P; Nunes, JD; Campilho, A; Cardoso, JS; S, HP; Puthussery, D; G, DR; V, JC; Zhang, Y; Fang, Z; Lin, Z; Zhang, Y; Lin, C; Zhang, L; Mao, L; Wu, M; Vi Vo, TT; Kim, SH; Lee, T; Kondo, S; Kasai, S; Dumbhare, P; Phuse, V; Dubey, Y; Jamthikar, A; Le Vuong, TT; Kwak, JT; Ziaei, D; Jung, H; Miao, T; Snead, DRJ; Ahmed Raza, SE; Minhas, F; Rajpoot, NM;

Publicação
CoRR

Abstract

2023

Annotating for Artificial Intelligence Applications in Digital Pathology: A Practical Guide for Pathologists and Researchers

Autores
Montezuma, D; Oliveira, SP; Neto, PC; Oliveira, D; Monteiro, A; Cardoso, JS; Macedo-Pinto, I;

Publicação
MODERN PATHOLOGY

Abstract
Training machine learning models for artificial intelligence (AI) applications in pathology often requires extensive annotation by human experts, but there is little guidance on the subject. In this work, we aimed to describe our experience and provide a simple, useful, and practical guide addressing annotation strategies for AI development in computational pathology. Annotation methodology will vary significantly depending on the specific study's objectives, but common difficulties will be present across different settings. We summarize key aspects and issue guiding principles regarding team interaction, ground-truth quality assessment, different annotation types, and available software and hardware options and address common difficulties while annotating. This guide was specifically designed for pathology annotation, intending to help pathologists, other researchers, and AI developers with this process.(c) 2022 THE AUTHORS. Published by Elsevier Inc. on behalf of the United States & Canadian Academy of Pathology. This is an open access article under the CC BY-NC-ND license (http://creativecommons. org/licenses/by-nc-nd/4.0/).

2023

Author Correction: Computer-aided diagnosis through medical image retrieval in radiology (Scientific Reports, (2022), 12, 1, (20732), 10.1038/s41598-022-25027-2)

Autores
Silva, W; Gonçalves, T; Härmä, K; Schröder, E; Obmann, VC; Barroso, MC; Poellinger, A; Reyes, M; Cardoso, JS;

Publicação
Scientific Reports

Abstract
The original version of this Article contained an error in the Acknowledgements section. “This work was partially funded by the Project TAMI—Transparent Artificial Medical Intelligence (NORTE- 01-0247-FEDER-045905) financed by ERDF—European Regional Fund through the North Portugal Regional Operational Program—NORTE 2020 and by the Portuguese Foundation for Science and Technology—FCT under the CMU—Portugal International Partnership, and also by the Portuguese Foundation for Science and Technology—FCT within PhD grants SFRH/BD/139468/2018 and 2020.06434.BD. The authors thank the Swiss National Science Foundation grant number 198388, as well as the Lindenhof foundation for their grant support.” now reads: “This work was supported by National Funds through the Portuguese Funding Agency, FCT–Foundation for Science and Technology Portugal, under Project LA/P/0063/2020, and also by the Portuguese Foundation for Science and Technology - FCT within PhD grants SFRH/BD/139468/2018 and 2020.06434.BD. The authors thank the Swiss National Science Foundation grant number 198388, as well as the Lindenhof foundation for their grant support.” The original Article has been corrected. © The Author(s) 2023.

  • 63
  • 66