Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Jaime Cardoso

2009

Partition-distance methods for assessing spatial segmentations of images and videos

Autores
Cardoso, JS; Carvalho, P; Teixeira, LF; Corte Real, L;

Publicação
COMPUTER VISION AND IMAGE UNDERSTANDING

Abstract
The primary goal of the research on image segmentation is to produce better segmentation algorithms. In spite of almost 50 years of research and development in this Held, the general problem of splitting in image into meaningful regions remains unsolved. New and emerging techniques are constantly being applied with reduced Success. The design of each of these new segmentation algorithms requires spending careful attention judging the effectiveness of the technique. This paper demonstrates how the proposed methodology is well suited to perform a quantitative comparison between image segmentation algorithms using I ground-truth segmentation. It consists of a general framework already partially proposed in the literature, but dispersed over several works. The framework is based on the principle of eliminating the minimum number of elements Such that a specified condition is met. This rule translates directly into a global optimization procedure and the intersection-graph between two partitions emerges as the natural tool to solve it. The objective of this paper is to summarize, aggregate and extend the dispersed work. The principle is clarified, presented striped of unnecessary supports and extended to sequences of images. Our Study shows that the proposed framework for segmentation performance evaluation is simple, general and mathematically sound.

2023

Unveiling the performance of video anomaly detection models - A benchmark-based review

Autores
Caetano, F; Carvalho, P; Cardoso, JS;

Publicação
Intell. Syst. Appl.

Abstract
Deep learning has recently gained popularity in the field of video anomaly detection, with the development of various methods for identifying abnormal events in visual data. The growing need for automated systems to monitor video streams for anomalies, such as security breaches and violent behaviours in public areas, requires the development of robust and reliable methods. As a result, there is a need to provide tools to objectively evaluate and compare the real-world performance of different deep learning methods to identify the most effective approach for video anomaly detection. Current state-of-the-art metrics favour weakly-supervised strategies stating these as the best-performing approaches for the task. However, the area under the ROC curve, used to justify this statement, has been shown to be an unreliable metric for highly unbalanced data distributions, as is the case with anomaly detection datasets. This paper provides a new perspective and insights on the performance of video anomaly detection methods. It reports the results of a benchmark study with state-of-the-art methods using a novel proposed framework for evaluating and comparing the different models. The results of this benchmark demonstrate that using the currently employed set of reference metrics led to the misconception that weakly-supervised methods consistently outperform semi-supervised ones. © 2023 The Authors

2022

Computer-aided diagnosis through medical image retrieval in radiology

Autores
Silva, W; Goncalves, T; Harma, K; Schroder, E; Obmann, VC; Barroso, MC; Poellinger, A; Reyes, M; Cardoso, JS;

Publicação
SCIENTIFIC REPORTS

Abstract
Currently, radiologists face an excessive workload, which leads to high levels of fatigue, and consequently, to undesired diagnosis mistakes. Decision support systems can be used to prioritize and help radiologists making quicker decisions. In this sense, medical content-based image retrieval systems can be of extreme utility by providing well-curated similar examples. Nonetheless, most medical content-based image retrieval systems work by finding the most similar image, which is not equivalent to finding the most similar image in terms of disease and its severity. Here, we propose an interpretability-driven and an attention-driven medical image retrieval system. We conducted experiments in a large and publicly available dataset of chest radiographs with structured labels derived from free-text radiology reports (MIMIC-CXR-JPG). We evaluated the methods on two common conditions: pleural effusion and (potential) pneumonia. As ground-truth to perform the evaluation, query/test and catalogue images were classified and ordered by an experienced board-certified radiologist. For a profound and complete evaluation, additional radiologists also provided their rankings, which allowed us to infer inter-rater variability, and yield qualitative performance levels. Based on our ground-truth ranking, we also quantitatively evaluated the proposed approaches by computing the normalized Discounted Cumulative Gain (nDCG). We found that the Interpretability-guided approach outperforms the other state-of-the-art approaches and shows the best agreement with the most experienced radiologist. Furthermore, its performance lies within the observed inter-rater variability.

2023

A CAD system for automatic dysplasia grading on H&E cervical whole-slide images

Autores
Oliveira, SP; Montezuma, D; Moreira, A; Oliveira, D; Neto, PC; Monteiro, A; Monteiro, J; Ribeiro, L; Goncalves, S; Pinto, IM; Cardoso, JS;

Publicação
SCIENTIFIC REPORTS

Abstract
Cervical cancer is the fourth most common female cancer worldwide and the fourth leading cause of cancer-related death in women. Nonetheless, it is also among the most successfully preventable and treatable types of cancer, provided it is early identified and properly managed. As such, the detection of pre-cancerous lesions is crucial. These lesions are detected in the squamous epithelium of the uterine cervix and are graded as low- or high-grade intraepithelial squamous lesions, known as LSIL and HSIL, respectively. Due to their complex nature, this classification can become very subjective. Therefore, the development of machine learning models, particularly directly on whole-slide images (WSI), can assist pathologists in this task. In this work, we propose a weakly-supervised methodology for grading cervical dysplasia, using different levels of training supervision, in an effort to gather a bigger dataset without the need of having all samples fully annotated. The framework comprises an epithelium segmentation step followed by a dysplasia classifier (non-neoplastic, LSIL, HSIL), making the slide assessment completely automatic, without the need for manual identification of epithelial areas. The proposed classification approach achieved a balanced accuracy of 71.07% and sensitivity of 72.18%, at the slide-level testing on 600 independent samples, which are publicly available upon reasonable request.

2023

Deep Edge Detection Methods for the Automatic Calculation of the Breast Contour

Autores
Freitas, N; Silva, D; Mavioso, C; Cardoso, MJ; Cardoso, JS;

Publicação
BIOENGINEERING-BASEL

Abstract
Breast cancer conservative treatment (BCCT) is a form of treatment commonly used for patients with early breast cancer. This procedure consists of removing the cancer and a small margin of surrounding tissue, while leaving the healthy tissue intact. In recent years, this procedure has become increasingly common due to identical survival rates and better cosmetic outcomes than other alternatives. Although significant research has been conducted on BCCT, there is no gold-standard for evaluating the aesthetic results of the treatment. Recent works have proposed the automatic classification of cosmetic results based on breast features extracted from digital photographs. The computation of most of these features requires the representation of the breast contour, which becomes key to the aesthetic evaluation of BCCT. State-of-the-art methods use conventional image processing tools that automatically detect breast contours based on the shortest path applied to the Sobel filter result in a 2D digital photograph of the patient. However, because the Sobel filter is a general edge detector, it treats edges indistinguishably, i.e., it detects too many edges that are not relevant to breast contour detection and too few weak breast contours. In this paper, we propose an improvement to this method that replaces the Sobel filter with a novel neural network solution to improve breast contour detection based on the shortest path. The proposed solution learns effective representations for the edges between the breasts and the torso wall. We obtain state of the art results on a dataset that was used for developing previous models. Furthermore, we tested these models on a new dataset that contains more variable photographs and show that this new approach shows better generalization capabilities as the previously developed deep models do not perform so well when faced with a different dataset for testing. The main contribution of this paper is to further improve the capabilities of models that perform the objective classification of BCCT aesthetic results automatically by improving upon the current standard technique for detecting breast contours in digital photographs. To that end, the models introduced are simple to train and test on new datasets which makes this approach easily reproducible.

2023

A simple machine learning-based framework for faster multi-scale simulations of path-independent materials at large strains

Autores
Carneiro, AMC; Alves, AFC; Coelho, RPC; Cardoso, JS; Pires, FMA;

Publicação
FINITE ELEMENTS IN ANALYSIS AND DESIGN

Abstract
Coupled multi-scale finite element analyses have gained traction over the last years due to the increasing available computational resources. Nevertheless, in the pursuit of accurate results within a reasonable time frame, replacing these high-fidelity micromechanical simulations with reduced-order data-driven models has been explored recently by the modelling community. In this work, two classes of machine learning models are trained for a porous hyperelastic microstructure to predict (i) whether the microscopic equilibrium problem is likely to fail and (ii) the stress-strain response. The former may be used to identify critical macroscopic points where one may fall back to the high-fidelity analysis and possibly apply convergence bowl-widening techniques. For the latter, both a linear regression with polynomial features and artificial Neural Networks have been used, and the required stress-strain derivatives for solving the equilibrium problem have been derived analytically. A weight regularisation is introduced to stabilise the tangent operator and several strategies are discussed for imposing null stresses in undeformed configurations for both regression models. The regression techniques, here analysed exclusively in the context of porous hyperelastic materials, evidence very promising prospects to accelerate multi-scale analyses of solids under large deformation.

  • 62
  • 66