2025
Autores
Costa, V; Oliveira, JM; Ramos, P;
Publicação
COMPUTATION
Abstract
Advancements in deep learning have revolutionized materials discovery by enabling predictive modeling of complex material properties. However, single-modal approaches often fail to capture the intricate interplay of compositional, structural, and morphological characteristics. This study introduces a novel multimodal deep learning framework for enhanced material property prediction, integrating textual (chemical compositions), tabular (structural descriptors), and image-based (2D crystal structure visualizations) modalities. Utilizing the Alexandriadatabase, we construct a comprehensive multimodal dataset of 10,000 materials with symmetry-resolved crystallographic data. Specialized neural architectures, such as FT-Transformer for tabular data, Hugging Face Electra-based model for text, and TIMM-based MetaFormer for images, generate modality-specific embeddings, fused through a hybrid strategy into a unified latent space. The framework predicts seven critical material properties, including electronic (band gap, density of states), thermodynamic (formation energy, energy above hull, total energy), magnetic (magnetic moment per volume), and volumetric (volume per atom) features, many governed by crystallographic symmetry. Experimental results demonstrated that multimodal fusion significantly outperforms unimodal baselines. Notably, the bimodal integration of image and text data showed significant gains, reducing the Mean Absolute Error for band gap by approximately 22.7% and for volume per atom by 22.4% compared to the average unimodal models. This combination also achieved a 28.4% reduction in Root Mean Squared Error for formation energy. The full trimodal model (tabular + images + text) yielded competitive, and in several cases the lowest, error metrics, particularly for band gap, magnetic moment per volume and density of states per atom, confirming the value of integrating all three modalities. This scalable, modular framework advances materials informatics, offering a powerful tool for data-driven materials discovery and design.
2024
Autores
Teixeira, M; Oliveira, JM; Ramos, P;
Publicação
MACHINE LEARNING AND KNOWLEDGE EXTRACTION
Abstract
Retailers depend on accurate sales forecasts to effectively plan operations and manage supply chains. These forecasts are needed across various levels of aggregation, making hierarchical forecasting methods essential for the retail industry. As competition intensifies, the use of promotions has become a widespread strategy, significantly impacting consumer purchasing behavior. This study seeks to improve forecast accuracy by incorporating promotional data into hierarchical forecasting models. Using a sales dataset from a major Portuguese retailer, base forecasts are generated for different hierarchical levels using ARIMA models and Multi-Layer Perceptron (MLP) neural networks. Reconciliation methods including bottom-up, top-down, and optimal reconciliation with OLS and WLS (struct) estimators are employed. The results show that MLPs outperform ARIMA models for forecast horizons longer than one day. While the addition of regressors enhances ARIMA's accuracy, it does not yield similar improvements for MLP. MLPs present a compelling balance of simplicity and efficiency, outperforming ARIMA in flexibility while offering faster training times and lower computational demands compared to more complex deep learning models, making them highly suitable for practical retail forecasting applications.
2024
Autores
Oliveira, JM; Ramos, P;
Publicação
MATHEMATICS
Abstract
This study investigates the effectiveness of Transformer-based models for retail demand forecasting. We evaluated vanilla Transformer, Informer, Autoformer, PatchTST, and temporal fusion Transformer (TFT) against traditional baselines like AutoARIMA and AutoETS. Model performance was assessed using mean absolute scaled error (MASE) and weighted quantile loss (WQL). The M5 competition dataset, comprising 30,490 time series from 10 stores, served as the evaluation benchmark. The results demonstrate that Transformer-based models significantly outperform traditional baselines, with Transformer, Informer, and TFT leading the performance metrics. These models achieved MASE improvements of 26% to 29% and WQL reductions of up to 34% compared to the seasonal Na & iuml;ve method, particularly excelling in short-term forecasts. While Autoformer and PatchTST also surpassed traditional methods, their performance was slightly lower, indicating the potential for further tuning. Additionally, this study highlights a trade-off between model complexity and computational efficiency, with Transformer models, though computationally intensive, offering superior forecasting accuracy compared to the significantly slower traditional models like AutoARIMA. These findings underscore the potential of Transformer-based approaches for enhancing retail demand forecasting, provided the computational demands are managed effectively.
2009
Autores
Almeida, F; Cruz, J; Oliveira, J;
Publicação
SISTEMAS E TECHNOLOGIAS DE INFORMACAO: ACTAS DA 4A CONFERENCIA IBERICA DE SISTEMAS E TECNOLOGIAS DE LA INFORMACAO
Abstract
Unified Communications (UC) have the potential to dramatically simplify and improve enterprise communications, reducing costs and improving revenue opportunities. This paper proposes an architecture of three layers for a UC solution based on open source technologies and open standards. The Infrastructure layer is responsible for the physical IP infrastructure network, the Server Hardware and Operating System layer includes the back-end operating system and server services that can be used by the UC platform and the Business Applications layer integrates the UC with other external applications. Finally, the paper presents the major benefits of UC solutions, giving a special emphasis to the benefits derived for the use of a standards-based I P communications.
2009
Autores
Almeida, FFL; Oliveira, JM; Cruz, JM;
Publicação
International Journal of Business and Management
Abstract
2010
Autores
Almeida, F; Oliveira, J; Cruz, J;
Publicação
International Journal of Software Engineering & Applications
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.