2011
Autores
Moreira, CL; Silva, B; Soares, FJ; Seca, L; Pecas Lopes, JA;
Publicação
CIGRE 2011 Bologna Symposium - The Electric Power System of the Future: Integrating Supergrids and Microgrids
Abstract
The massive interconnection of offshore Wind Farms (WF) brings challenges for the operation of electric grids. The predicted amount of offshore wind power will lead to a smaller ratio of conventional units operating in the system. Thus, the power system will have less capability to provide fast dynamic regulation. Despite of offshore WF being able to inject power on the AC grid through High Voltage Direct Current (HVDC) convertors, they cannot participate on frequency support by the intrinsic decoupling that DC adoption brings. This paper proposes a control methodology, based on local controllers, to enable the participation of offshore WF in primary frequency control. Additionally, enhancements were made on the Wind Energy Converters (WEC) controller to make them capable of emulating inertial behaviour. Tests were performed in a multi-terminal DC network with two off shore wind farms to assess the feasibility and effectiveness of the concept in a communication-free framework.
2011
Autores
Gil, N; Issicaba, D; Rocha Almeida, PM; Pecas Lopes, JA;
Publicação
CIGRE 2011 Bologna Symposium - The Electric Power System of the Future: Integrating Supergrids and Microgrids
Abstract
The operation and planning of Low Voltage (LV) and Medium Voltage (MV) distribution networks have been changing over the last decade. Due to the presence of Distributed Generation (DG) and microgeneration, an active role has been attributed to these networks in grid operation. For this accomplishment, different conceptual approaches were developed. In [1], a hierarchical control structure was defined, considering that DG units, onload tap changer transformers, static var compensators and loads can be controlled by a hierarchically higher entity, the Central Autonomous Management Unit (CAMC). The CAMC is also responsible for the management of specific LV networks, the MicroGrids (MG), which in turn have autonomy to manage their loads and microgeneration units through an entity called MicroGrid Central Controller (MGCC). A MV grid with these characteristics plus some storage devices would then be called a Multi-MicroGrid (MMG), being, among other functionalities, able to operate isolated from the upstream network. The recent appearance of a new type of load to the system, the Electric Vehicle (EV), expected to be largely integrated in the electricity grids in the upcoming years, has a great potential for adding controllability to the MMG. In this paper, an EV control droop (see [2]) will be introduced to improve the MMG performance when EVs operate as active elements. EV controllers are then able to receive setpoints from the CAMC and also actively update the droop settings in order to deal with different events that may occur on the MMG, for instance when moving from interconnected to islanded mode of operation. The performance of the MMG with controllable EV will be compared with a MMG without the participation of EV. Additionally, multiple philosophies for setting the droops will be tested, considering that EV may inject power into the grid as storage devices or just act as controllable loads. Simulation results were obtained exploiting a dynamic simulation platform developed using the EUROSTAG and MATLAB environments.
2006
Autores
Hatziargyriou, N; Jenkins, N; Strbac, G; Pecas Lopes, JA; Ruela, J; Engler, A; Oyarzabal, J; Kariniotakis, G; Amorim, A;
Publicação
41st International Conference on Large High Voltage Electric Systems 2006, CIGRE 2006
Abstract
Microgrids comprise Low Voltage distribution systems with distributed energy sources, such as micro-turbines, fuel cells, PVs, etc., together with storage devices, i.e. flywheels, energy capacitors and batteries, and controllable loads, offering considerable control capabilities over the network operation. These systems are interconnected to the Medium Voltage Distribution network, but they can be also operated isolated from the main grid, in case of faults in the upstream network. From the customer point of view, Microgrids provide both thermal and electricity needs, and in addition enhance local reliability, reduce emissions, improve power quality by supporting voltage and reducing voltage dips, and potentially lower costs of energy supply. This paper outlines selected research findings of the EU funded MICROGRIDS project (Contract ENK-CT-2002-00610). These include: • Development and enhancement of Microsource controllers to support frequency and voltage based on droops. Application of software agents for secondary control. • Development of the Microgrid Central Controller (MGCC). Economic Scheduling functions have been developed and integrated in a software package able to simulate the capabilities of the MGCC to place bids to the market operator under various policies and to evaluate the resulting environmental benefits. • Analysis of the communication requirements of the Microgrids control architecture • Investigation of alternative market designs for trading energy and ancillary services within a Microgrid. Development of methods for the quantification of reliability and loss reduction. • Initial measurements from an actual LV installation.
2012
Autores
Hatziargyriou, N; Pecas Lopes, JA; Bower, ET; Strunz, K; Rivier, M; Lioliou, V; Wu, J; Papathanassiou, S; Karfopoulos, E; Gonzalez Bordagaray, A; Cabral, P; Llanos Lecum, C; Walsh, A; Kanellopoulos, K; Joyce, C; Hartmann, N; Willums, JO;
Publicação
44th International Conference on Large High Voltage Electric Systems 2012
Abstract
This paper highlights findings of the European Commission funded project called MERGE (Mobile Energy Resources in Grids of Electricity). MERGE is a collaborative research project that includes utilities, regulators, commercial organisations and universities with interests in the power generation, automotive, electronic commerce and hybrid and electric vehicle sectors across the entire European Union (EU). This major two-year research initiative began in January 2010. The MERGE project mission is to evaluate the impacts that electric vehicles (EV) will have on the European Union (EU) electric power systems with regards to planning, operation and market functioning. The focus is placed on EV and SmartGrid/MicroGrid simultaneous deployment, together with renewable energy increase, leading to CO2 emission reduction through the identification of enabling technologies and advanced control approaches. In this paper indicative results from the impact of the additional EV load will have in the daily and yearly system load diagrams and in the operation of the transmission and distribution networks of five European countries (Greece, UK, Spain, Portugal, and Germany) in 2020 are presented. General conclusions are drawn.
2012
Autores
Styczynski, Z; Stotzer, M; Muller, G; Komarnicki, P; Belmans, R; Driesen, J; Hansen, AB; Pecas Lopes, J; Hatziargyriou, N;
Publicação
44th International Conference on Large High Voltage Electric Systems 2012
Abstract
In this contribution international experiences concerning the integration of electrified cars (e-cars) into the grid in particular when there is a high penetration of renewable energies are presented. Future shortage of fossil fuels and concerns about security of supply derived the idea of electrified mobility which requires a new approach to design a complex system for future transportation. This system will be based on existing infrastructures (electricity system, road infrastructure, etc.) but it can also partially be considered as a "green field" approach. In the paper new strategies and global trends in the development of an e-mobility system will be presented, including strategies to combine the power system with the information and communication systems as well as a logistics. Practical experiences and data based on few projects e.g. Harz.EE-Mobility in Germany. European research as well as industry projects with these aims will be introduced and results will be presented. The main focus is twofold: integrating the upcoming mobile loads into the grid and likely storage possibilities that can operate bidirectional within the power grid. Simulations show that single-phase charging (3.7 kW) in the low and medium voltage grid does not lead to grid situations that require any significant adjustments in the power network regarding the loading of the assets. However, uncoordinated single-phase charging could create significant voltage deviations due to unbalanced loading of the three-phase low voltage grid. The different phases influence each other in unbalanced situations, through the common neutral conductor. These effects can already occur at low market penetration levels, due to the presence of local penetration levels being significantly higher than the average market level. For a significant amount of e-cars and high power charging (up to 22 kW in Germany) after 2020 the main concerns of investigation will be the forecasting of the requested charging power, the location of this demand and the impact on power grid operation security without active grid control (e.g. voltage, asset overloading). On the low-voltage grid Further, a full integration of renewable generation is also important as the amount of thermal power plants decrease, because they currently balance the intermittent, renewable generation. The future integration of e-cars into the power grid and the coordinated operation/charging with renewable energies (mobile electricity storage) will be one of the most important challenges. The conflict between mobility and the availability of storage capacity in contrast to the generation will be discussed and some recommendations based on the modeling and simulations will be presented in the paper, too.
2009
Autores
Estanqueiro, A; Pecas Lopes, J;
Publicação
European Wind Energy Conference and Exhibition 2009, EWEC 2009
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.