Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Manuel Matos

2021

Operational Management of Medium Voltage and Low Voltage Networks under a Smart Grid Environment

Autores
Teixeira, H; Lopes, JAP; Matos, MA;

Publicação
2021 IEEE MADRID POWERTECH

Abstract
Electrification of society and economy is crucial to fight against climate changes assuming simultaneously a large-scale integration of electricity generation exploiting Renewable Energy Sources (RES). The increasing presence of RES and Electric Vehicles (EV) in Low Voltage (LV) networks, and the emergence of the Smart Grid paradigm will require relevant changes in the operational management of both LV and Medium Voltage (MV) networks. In this paper, two different strategies (separated and coordinated management) for the operational management of MV and LV networks are compared regarding their ability to integrate large amounts of RES and to accept increased electrification of consumption, including EV. Each management strategy is modeled through optimization problems, being then applied to an electrical distribution system consisting of MV and LV networks. Results show that a coordinated operational management outperforms the separated strategy, by allowing the integration of much higher volumes of RES and EV.

2021

An unsupervised approach for fault diagnosis of power transformers

Autores
Dias, L; Ribeiro, M; Leitao, A; Guimaraes, L; Carvalho, L; Matos, MA; Bessa, RJ;

Publicação
QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL

Abstract
Electrical utilities apply condition monitoring on power transformers (PTs) to prevent unplanned outages and detect incipient faults. This monitoring is often done using dissolved gas analysis (DGA) coupled with engineering methods to interpret the data, however the obtained results lack accuracy and reproducibility. In order to improve accuracy, various advanced analytical methods have been proposed in the literature. Nonetheless, these methods are often hard to interpret by the decision-maker and require a substantial amount of failure records to be trained. In the context of the PTs, failure data quality is recurrently questionable, and failure records are scarce when compared to nonfailure records. This work tackles these challenges by proposing a novel unsupervised methodology for diagnosing PT condition. Differently from the supervised approaches in the literature, our method does not require the labeling of DGA records and incorporates a visual representation of the results in a 2D scatter plot to assist in interpretation. A modified clustering technique is used to classify the condition of different PTs using historical DGA data. Finally, well-known engineering methods are applied to interpret each of the obtained clusters. The approach was validated using data from two different real-world data sets provided by a generation company and a distribution system operator. The results highlight the advantages of the proposed approach and outperformed engineering methods (from IEC and IEEE standards) and companies legacy method. The approach was also validated on the public IEC TC10 database, showing the capability to achieve comparable accuracy with supervised learning methods from the literature. As a result of the methodology performance, both companies are currently using it in their daily DGA diagnosis.

2021

Interfacing Power Electronics Systems for Smart Grids: Innovative Perspectives of Unified Systems and Operation Modes

Autores
Monteiro, V; Soares, T; Lopes, JP; Matos, M; Afonso, JL;

Publicação
IECON 2021 - 47TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY

Abstract
The power distribution grid is centrally managed concerning the requirements of the end-users, however, with the appearance of smart grids, new technologies arc arising. Therefore, distributed energy resources, mainly, renewables, energy storage systems, electric mobility, and power quality are viewed as encouraging contributions for improving power management. In these circumstances, this paper presents a power electronics perspective for the power distribution grid, considering innovative features, and including a power quality perception. Throughout the paper are presented relevant concepts for a concrete realization of a smart grid, supported by the integration of power electronics devices as the interface of the mentioned technologies. Aiming to support the innovative power electronics systems for interfacing the mentioned technologies in smart grids, a set of developed power electronics equipment was developed and, along with the paper, are shown and described, supporting the most important contributions of this paper.

2022

Consumer-centric electricity markets: A comprehensive review on user preferences and key performance indicators

Autores
Oliveira, C; Botelho, DF; Soares, T; Faria, AS; Dias, BH; Matos, MA; De Oliveira, LW;

Publicação
ELECTRIC POWER SYSTEMS RESEARCH

Abstract
The power system is facing a transition from its traditional centralized model to a more decentralized one, through the emergence of proactive consumers on the network, known as prosumers. This paradigm shift favors the emergence of new electricity market designs. Peer-to-Peer (P2P) based structures have been gaining prominence worldwide. In the P2P market, the prosumer assumes a more active role in the system, being able to directly trade its energy without the need for intermediaries. This paper contributes with a comprehensive overview of consumer-centric electricity markets, providing background on different aspects of P2P sharing, in particular the inclusion of peer preferences in the electricity trading process through product differentiation. A performance assessment of the different modeled preferences was carried out using key performance indicators (KPIs). Different user preferences under the product differentiation mechanism were simulated. The results demonstrate that consumer-centric markets increase the penetration of renewable energy sources into the network and tend to affect loads flexibility according to the renewable generation.

2021

Optimal setting of PV and battery energy storage in radial distribution systems using multi-objective criteria with fuzzy logic decision-making

Autores
Selim, A; Kamel, S; Jurado, F; Lopes, JAP; Matos, M;

Publicação
IET GENERATION TRANSMISSION & DISTRIBUTION

Abstract
Minimising the total power losses and enhancing the voltage profile is achieved using a proposed multi-objective chaotic salp swarm algorithm with fuzzy logic decision-making. The proposed multi-objective chaotic salp swarm algorithm is utilised to determine the optimal size and location of photovoltaic in radial distribution system to minimise the total power losses, total voltage deviation, and maximise the voltage stability index. In addition, the proposed multi-objective chaotic salp swarm algorithm is used to find suitable scheduling for battery energy storage charge/discharge during 24 h considering the intermittent nature of photovoltaic power generation. The proposed algorithm is tested on standard and practical radial distribution systems (IEEE 33-bus and 94-bus Portuguese systems). The performance of the proposed algorithm is validated by comparing its results with those obtained by other competitive optimisation techniques. The obtained results prove the ability of the proposed algorithm to achieve an efficient setting for photovoltaics and battery energy storages and determine their optimal allocations in order to minimise the power losses and enhance the voltage profile with satisfying all operating constraints.

2024

Public policies to foster green hydrogen seasonal storage: Portuguese study case model until 2040

Autores
Santos, BH; Lopes, JP; Carvalho, L; Matos, M; Alves, I;

Publicação
ENERGY STRATEGY REVIEWS

Abstract
Portugal made a climate commitment when it ratified the Paris Climate Agreement in 2015. As a result, Portugal, along with other EU members, has created a national roadmap for the deployment of hydrogen as a crucial component of Portugal ' s energy transition towards carbon neutrality, creating synergies between the electric and gas systems. The increased variability of generation from variable renewable power sources will create challenges regarding the security of supply, requiring investment in storage solutions to minimize renewable energy curtailment and to provide dispatchability to the electric power system. Hydrogen can be a renewable energy carrier capable of ensuring not only the desired transformation of the infrastructures of the gas system but also an integrator of the Electric System, such as in Power -to -Power (P2P) systems. Hydrogen can be produced with a surplus of renewable electricity from wind and solar, allowing a long-term energy seasonal storage strategy, namely by using underground salt caverns, to be subsequently transformed into electricity when demand cannot be supplied due to a shortage of renewable generation from solar or wind. P2P investments are capital intensive and require the development of transitional regulation mechanisms to both create opportunities to market agents while fostering the energy surplus valuation and decreasing the energy dependency. In order to maintain the electric system ' s security of supply, the suggested methodology innovatively manages the importance of seasonal storage of renewable energy surplus using hydrogen in power systems. It suggests a novel set of regulatory strategies to foster the creation of a P2P solution that maintains generation adequacy while assisting in decarbonising the electric power industry. Such methodology combines long-term adequacy assessment with regulatory framework evaluation to evaluate the cost of the proposed solutions to the energy system. A case study based on the Portuguese power system outlook between 2030 and 2040 demonstrates that the considerable renewable energy surplus can be stored as hydrogen and converted back into electricity to assure adequate security of supply levels throughout the year with economic feasibility under distinct public policy models.

  • 9
  • 26