2025
Autores
Mussi, M; Metelli, AM; Restelli, M; Losapio, G; Bessa, RJ; Boos, D; Borst, C; Leto, G; Castagna, A; Chavarriaga, R; Dias, D; Egli, A; Eisenegger, A; El Manyari, Y; Fuxjäger, A; Geraldes, J; Hamouche, S; Hassouna, M; Lemetayer, B; Leyli-Abadi, M; Liessner, R; Lundberg, J; Marot, A; Meddeb, M; Schiaffonati, V; Schneider, M; Stadelmann, T; Usher, J; Van Hoof, H; Viebahn, J; Waefler, T; Zanotti, G;
Publicação
iScience
Abstract
Artificial Intelligence (AI) is transforming every aspect of modern society. It demonstrates a high potential to contribute to more flexible operations of safety-critical network infrastructures under deep transformation to tackle global challenges, such as climate change, energy transition, efficiency, and digital transformation, including increasing infrastructure resilience to natural and human-made hazards. The widespread adoption of AI creates the conditions for a new and inevitable interaction between humans and AI-based decision systems. In such a scenario, creating an ecosystem in which humans and AI interact healthily, where the roles and positions of both actors are well-defined, is a critical challenge for research and industry in the coming years. This perspective article outlines the challenges and requirements for effective human-AI interaction by taking an interdisciplinary point of view that merges computer science, decision-making sciences, psychological constructs, and industrial practices. The work focuses on three emblematic safety-critical scenarios from two different domains: energy (power grids) and mobility (railway networks and air traffic management). © 2025 Elsevier B.V., All rights reserved.
2025
Autores
Bost, L; Fernandes, FS; Bessa, RJ;
Publicação
SUSTAINABLE ENERGY GRIDS & NETWORKS
Abstract
The increasing penetration of renewable energy sources in power systems has heightened the importance of grid-forming (GFM) converters, which emulate the dynamic behavior of synchronous machines and are crucial for ensuring stability in converter-dominated grids. However, the complexity of modern grids calls for innovative control mechanisms to unlock the full potential of GFM technology. This work presents a novel automated framework for control design in power systems. Simulated annealing is used to evolve the structural design of control systems represented as graph-based models. The method achieves greater flexibility by using control graphs instead of traditional tree-based representations, supporting complex feedback loop configurations. A simplification process is also included to reduce complexity and improve interpretability, ensuring practical applicability. Validation on a two-generator power system with one GFM converter demonstrates the method's ability to design robust controllers that enhance system stability, achieving better performance metrics, such as smoother frequency responses with significantly reduced frequency deviations compared to benchmark configurations. The improved frequency response arises from differing terminal angle profiles, enabling faster, stronger power responses that quickly arrest frequency deviations during disturbances.
2025
Autores
Silva C.A.M.; Watson C.; Bessa R.J.;
Publicação
International Conference on the European Energy Market Eem
Abstract
The electrification of transportation, driven by the widespread adoption of electric vehicles and increased integration of renewable energy, is critical to decarbonizing mobility and society. Demand response strategies, such as dynamic pricing, enable indirect control of charging processes, but their success relies on accurately estimating consumer responses to tariff changes. Observational data can provide insights into consumer behavior, but the presence of confounding variables motivates the use of causal inference techniques for a reliable elasticity estimation. This study proposes a data-driven framework for optimizing dayahead charging tariffs, leveraging causal discovery and inference algorithms validated on a synthetically generated dataset. A sensitivity analysis explores the impact of data availability on elasticity estimation and the performance of the resulting demand response strategy. The findings highlight the potential of causal machine learning to characterize consumers and, ultimately, the need for regular characterization to improve the efficiency of demand-side management.
2025
Autores
Reiz, C; Gouveia, C; Bessa, RJ; Lopes, JP; Kezunovic, M;
Publicação
SUSTAINABLE ENERGY GRIDS & NETWORKS
Abstract
Increased electrification of various critical infrastructures has been recognized as a key to achieving decarbonization targets worldwide. This creates a need to better understand the risks associated with future power systems and how such risks can be defined, assessed, and mitigated. This paper surveys prior work on power system risk assessment and management and explores the various approaches to risk definition, assessment, and mitigation. As a result, the paper proposes how future grid developments should be assessed in terms of risk causes, what methodology may be used to reduce the risk impacts, and how such approaches can increase grid resilience. While we attempt to generalize and classify various approaches to solving the problem of risk assessment and mitigation, we also provide examples of how specific approaches undertaken by the authors in the past may be expanded in the future to address the design and operation of the future electricity system to manage the risk more effectively. The importance of the metrics for risk assessment and methodology for quantification of risk reduction are illustrated through the examples. The paper ends with recommendations on addressing the risk and resilience of the electricity system in the future resilient implementation while achieving decarbonization goals through massive electrification.
2025
Autores
Fernandes, FS; Bessa, RJ; Lopes, JP;
Publicação
JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY
Abstract
In a high-risk sector, such as power system, transparency and interpretability are key principles for effectively deploying artificial intelligence (AI) in control rooms. Therefore, this paper proposes a novel methodology, the evolving symbolic model (ESM), which is dedicated to generating highly interpretable data-driven models for dynamic security assessment (DSA), namely in system security classification (SC) and the definition of preventive control actions. The ESM uses simulated annealing for a data-driven evolution of a symbolic model template, enabling different cooperative learning schemes between humans and AI. The Madeira Island power system is used to validate the application of the ESM for DSA. The results show that the ESM has a classification accuracy comparable to pruned decision trees (DTs) while boasting higher global inter-pretability. Moreover, the ESM outperforms an operator-defined expert system and an artificial neural network in defining preventive control actions.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.