2015
Autores
Aparício, DO; Ribeiro, PMP; Silva, FMA;
Publicação
CoRR
Abstract
2015
Autores
Choobdar, S; Ribeiro, P; Silva, F;
Publicação
PROCEEDINGS OF THE 2015 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2015)
Abstract
It is well known that many social networks follow the homophily principle, dictating that individuals tend to connect with similar peers. Past studies focused on non-topological properties, such as the age, gender, beliefs or educations. In this paper we focus precisely on the topology itself, exploring the possible existence of pairwise role dependency, that is, purely structural homophily. We show that while pairwise dependency is necessary for some structural roles, it may be misleading for others. We also present SR-Diffuse, a novel method for identifying the structural roles of nodes within a network. It is an iterative algorithm following an optimization model able to learn simultaneously from topological features and structural homophily, combining both aspects. For assessing our method, we applied it in a classification problem in information cascades, comparing its performance against several baseline methods. The experimental results with Flickr and Digg data show that SR-Diffuse can improve the quality of the discovered roles and can better represent the profile of the individuals, leading to a better prediction of social classes within information cascades.
2015
Autores
Lengauer, C; Bouge, L; Silva, F;
Publicação
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE
Abstract
2015
Autores
Nabizadeh, AH; Jorge, AM; Leal, JP;
Publicação
WEBIST 2015 - 11th International Conference on Web Information Systems and Technologies, Proceedings
Abstract
The main goal of recommender systems is to assist users in finding items of their interest in very large collections. The use of good automatic recommendation promotes customer loyalty and user satisfaction because it helps users to attain their goals. Current methods focus on the immediate value of recommendations and are evaluated as such. This is insufficient for long term goals, either defined by users or by platform managers. This is of interest in recommending learning resources to learn a target concept, and also when a company is organizing a campaign to lead users to buy certain products or moving to a different customer segment. Therefore, we believe that it would be useful to develop recommendation algorithms that promote the goals of users and platform managers (e.g. e-shop manager, e-learning tutor, ministry of culture promotor). Accordingly, we must define appropriate evaluation methodologies and demonstrate the concept on practical cases.
2015
Autores
Paiva, JC; Leal, JP; Queiros, R;
Publicação
LANGUAGES, APPLICATIONS AND TECHNOLOGIES, SLATE 2015
Abstract
Existing gamification services have features that preclude their use by e-learning tools. Odin is a gamification service that mimics the API of state-of-the-art services without these limitations. This paper describes Odin, its role in an e-learning system architecture requiring gamification, and details its implementation. The validation of Odin involved the creation of a small e-learning game, integrated in a Learning Management System (LMS) using the Learning Tools Interoperability (LTI) specification.
2015
Autores
Leal, JP; Costa, T;
Publicação
COMPUTER SCIENCE AND INFORMATION SYSTEMS
Abstract
The research presented in this paper builds on previous work that lead to the definition of a family of semantic relatedness algorithms. These algorithms depend on a semantic graph and on a set of weights assigned to each type of arcs in the graph. The current objective of this research is to automatically tune the weights for a given graph in order to increase the proximity quality. The quality of a semantic relatedness method is usually measured against a benchmark data set. The results produced by a method are compared with those on the benchmark using a nonparametric measure of statistical dependence, such as the Spearman's rank correlation coefficient. The presented methodology works the other way round and uses this correlation coefficient to tune the proximity weights. The tuning process is controlled by a genetic algorithm using the Spearman's rank correlation coefficient as fitness function. This algorithm has its own set of parameters which also need to be tuned. Bootstrapping is a statistical method for generating samples that is used in this methodology to enable a large number of repetitions of a genetic algorithm, exploring the results of alternative parameter settings. This approach raises several technical challenges due to its computational complexity. This paper provides details on techniques used to speedup the process. The proposed approach was validated with the Word Net 2.1 and the Word Sim-353 data set. Several ranges of parameter values were tested and the obtained results are better than the state of the art methods for computing semantic relatedness using the Word Net 2.1, with the advantage of not requiring any domain knowledge of the semantic graph.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.