2015
Autores
Schwartz, MP; Hou, ZG; Propson, NE; Zhang, J; Engstrom, CJ; Costa, VS; Jiang, P; Nguyen, BK; Bolin, JM; Daly, W; Wang, Y; Stewart, R; Page, CD; Murphy, WL; Thomson, JA;
Publicação
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
Abstract
Human pluripotent stem cell-based in vitro models that reflect human physiology have the potential to reduce the number of drug failures in clinical trials and offer a cost-effective approach for assessing chemical safety. Here, human embryonic stem (ES) cell-derived neural progenitor cells, endothelial cells, mesenchymal stem cells, and microglia/macrophage precursors were combined on chemically defined polyethylene glycol hydrogels and cultured in serum-free medium to model cellular interactions within the developing brain. The precursors self-assembled into 3D neural constructs with diverse neuronal and glial populations, interconnected vascular networks, and ramified microglia. Replicate constructs were reproducible by RNA sequencing (RNA-Seq) and expressed neurogenesis, vasculature development, and microglia genes. Linear support vector machines were used to construct a predictive model from RNA-Seq data for 240 neural constructs treated with 34 toxic and 26 nontoxic chemicals. The predictive model was evaluated using two standard hold-out testing methods: a nearly unbiased leave-one-out cross-validation for the 60 training compounds and an unbiased blinded trial using a single hold-out set of 10 additional chemicals. The linear support vector produced an estimate for future data of 0.91 in the cross-validation experiment and correctly classified 9 of 10 chemicals in the blinded trial.
2015
Autores
Zaverucha, G; Costa, VS;
Publicação
MACHINE LEARNING
Abstract
2015
Autores
Davis, J; Costa, VS; Peissig, PL; Caldwell, M; Page, D;
Publicação
Foundations of Biomedical Knowledge Representation - Methods and Applications
Abstract
2015
Autores
Emiliano, R; Antunes, M;
Publicação
10TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION (ICCSE 2015)
Abstract
Computer networking is a central topic in computer science courses curricula offered by higher education institutions. Network virtualization and simulation tools, like GNS3, allows students and practitioners to test real world networking configuration scenarios and to configure complex network scenarios by configuring virtualized equipments, such as routers and switches, through each one's virtual console. The configuration of advanced network topics in GNS3 requires that students have to apply basic and very repetitive IP configuration tasks in all network equipments. As the network topology grows, so does the amount of network equipments to be configured, which may lead to logical configuration errors. In this paper we propose an extension for GNS3 network virtualizer, to automatically generate a valid configuration of all the network equipments in a GNS3 scenario. Our implementation is able to automatically produce an initial IP and routing configuration of all the Cisco virtual equipments by using the GNS3 specification files. We tested this extension against a set of networked scenarios which proved the robustness, readiness and speedup of the overall configuration tasks. In a learning environment, this feature may save time for all networking practitioners, both beginners or advanced, who aim to configure and test network topologies, since it automatically produces a valid and operational configuration for all the equipments designed in a GNS3 environment.
2015
Autores
Costa, J; Silva, C; Antunes, M; Ribeiro, B;
Publicação
2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN)
Abstract
Social networks are making part of the daily routine of millions of users. Twitter is among Facebook and Instagram one of the most used, and can be seen as a relevant source of information as users share not only daily status, but rapidly propagate news and events that occur worldwide. Considering the dynamic nature of social networks, and their potential in information spread, it is imperative to find learning strategies able to learn in these environments and cope with their dynamic nature. Time plays an important role by easily out-dating information, being crucial to understand how informative can past events be to current learning models and for how long it is relevant to store previously seen information, to avoid the computation burden associated with the amount of data produced. In this paper we study the impact of longstanding messages in micro-blogging classification by using different training time-window sizes in the learning process. Since there are few studies dealing with drift in Twitter and thus little is known about the types of drift that may occur, we simulate different types of drift in an artificial dataset to evaluate and validate our strategy. Results shed light on the relevance of previously seen examples according to different types of drift.
2015
Autores
Cunha, J; Silva, C; Antunes, M;
Publicação
CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS/INTERNATIONAL CONFERENCE ON PROJECT MANAGEMENT/CONFERENCE ON HEALTH AND SOCIAL CARE INFORMATION SYSTEMS AND TECHNOLOGIES, CENTERIS/PROJMAN / HCIST 2015
Abstract
Social media advancements and the rapid increase in volume and complexity of data generated by Internet services are becoming challenging not only technologically, but also in terms of application areas. Performance and availability of data processing are critical factors that need to be evaluated since conventional data processing mechanisms may not provide adequate support. Apache Hadoop with Mahout is a framework to storage and process data at large-scale, including different tools to distribute processing. It has been considered an effective tool currently used by both small and large businesses and corporations, like Google and Facebook, but also public and private healthcare institutions. Given its recent emergence and the increasing complexity of the associated technological issues, a variety of holistic framework solutions have been put forward for each specific application. In this work, we propose a generic functional architecture with Apache Hadoop framework and Mahout for handling, storing and analyzing big data that can be used in different scenarios. To demonstrate its value, we will show its features, advantages and applications on health Twitter data. We show that big health social data can generate important information, valuable both for common users and practitioners. Preliminary results of data analysis on Twitter health data using Apache Hadoop demonstrate the potential of the combination of these technologies. (C) 2015 The Authors. Published by Elsevier B.V.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.