Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CPES

2025

Local flexibility markets based on grid segmentation

Autores
Retorta, F; Mello, J; Gouveia, C; Silva, B; Villar, J; Troncia, M; Chaves Avila, JP;

Publicação
UTILITIES POLICY

Abstract
Local flexibility markets are a promising solution to aid system operators in managing the network as it faces the growth of distributed resources and the resulting impacts on voltage control, among other factors. This paper presents and simulates a proposal for an intra-day local flexibility market based on grid segmentation. The design provides a market-based solution for distribution system operators (DSOs) to address near-real-time grid issues. The grid segmentation computes the virtual buses that represent each zone and the sensitivity indices that approximate the impact of activating active power flexibility in the buses within the zone. This approach allows DSOs to manage and publish their flexibility needs per zone and enables aggregators to offer flexibility by optimizing their resource portfolios per zone. The simulation outcomes allow for the assessment of market performance according to the number of zones computed and show that addressing overloading and voltage control through zonal approaches can be cost-effective and counterbalance minor errors compared to node-based approaches.

2025

Delivering energy from hybridised offshore wind-wave parks considering electricity and hydrogen options: an optimisation approach

Autores
Varotto, S; Kazemi-Robati, E; Silva, B;

Publicação
SUSTAINABLE ENERGY GRIDS & NETWORKS

Abstract
Research around the co-location of different renewable energy technologies in offshore sites is increasing due to the potential complementarity of different sources that could decrease the power output variability, and increase reliability. However, further decrease of the power fluctuations and higher economic profitability could be achieved with energy storage. In this work, a model is developed for optimal sizing and energy management of energy storage and delivery solutions to accommodate the hybridisation of an offshore wind park. A set of options is considered for energy storage: the integration of a battery energy storage system (BESS), hydrogen production for direct sale or hydrogen/fuel cell system. For energy delivery, an expansion of the transmission cable, hydrogen pipeline or transportation by ship is evaluated. The case study used to test the model is the offshore farm WindFloat Atlantic located near the coast of Viana do Castelo, Portugal, which is proposed to be hybridised with wave energy converters (WEC). Sensitivity analyses are performed on possible components' cost variations, hydrogen shipping frequency or sale price. The results show that hydrogen production from the studied offshore hybrid park is profitable, and the transmission through submarine pipeline is competitive with electrical connections by cable. The highest profitability is achieved when pipeline and cable expansion are combined. Hydrogen transportation by ship also appears profitable, in the eventuality that additional submarine transmission facilities cannot be installed.

2025

A Nonlinear Control Allocation Strategy for Dual Half Bridge Power Converters

Autores
de Castro, R; Araujo, RE; Brembeck, J;

Publicação
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Abstract
This work focuses on designing nonlinear control algorithms for dual half-bridge converters (DHBs). We propose a two-layer controller to regulate the current and voltage of the DHB. The first layer utilizes a change in the control variable to obtain a quasi-linear representation of the DHB, allowing for the application of simple linear controllers to regulate current and power flow. The second layer employs a nonlinear control allocation algorithm to select control actions that fulfill (pseudo) power setpoints specified by the first control layer; it also minimizes peak-to-peak currents in the DHB and enforces voltage balance constraints. We apply the DHB and this new control strategy to manage power flow in a hybrid energy storage system comprising of a battery and supercapacitors. Numerical simulation results demonstrate that, in comparison with state-of-the-art approaches, our control algorithm is capable of maintaining good transient behavior over a wide operating range, while reducing peak-to-peak current by up to 80%.

2025

Towards a digital model for emulation of an electrolyzer in real-time: An initial study

Autores
Joao, MA; Araújo, RE;

Publicação
2025 9TH INTERNATIONAL YOUNG ENGINEERS FORUM ON ELECTRICAL AND COMPUTER ENGINEERING, YEF-ECE

Abstract
The objective of this paper is to delineate the ongoing doctoral research work that is focused on the development of a digital model intended to emulate the real-time operation of an electrolyzer that is powered by a DC/DC converter. The digital model of the converter and the proton exchange membrane (PEM) electrolyzer (EL) is presented, and it is based on an electrical equivalent model. A primary contribution of this study is the analysis of the errors resulting from the discretization process. Furthermore, the implementation and development of the digital model requires a comprehensive study of the errors and key affecting factors. Additionally, the formulation of a mechanism to reduce these errors is essential for advancing this topic. Preliminary results obtained using the digital emulator developed demonstrated its capacity to reproduce the voltage and current response applied to the electrolyzer with a reduced error compared to the continuous-time model.

2025

Speed Control of Switched Reluctance Motor with Torque Ripple Reduction Based on Super-Twisting Sliding Mode Control

Autores
Touati, Z; Araújo, RE;

Publicação
IFAC PAPERSONLINE

Abstract
In this paper, a robust nonlinear Super-Twisting Sliding Mode Controller (STSMC) is proposed to minimize torque ripple in Switched Reluctance Motor (SRM) drive systems, thereby reducing acoustic noise and vibration. To optimize torque ripple, the firing angles (theta(on) and theta(off)) are dynamically adjusted based on the instantaneous torque and speed error. To demonstrate its superiority, the performance of the STSMC is compared with conventional linear and Sliding Mode Control (SMC) regulators. The results confirm the robustness and effectiveness of the proposed controller. The torque ripple with PSO-optimized firing angles and STSMC is reduced by around 50% compared to conventional fixed switching angles. Copyright (c) 2025 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)

2025

A New Design for an Electrolyzer Power Converter Architecture Capable of Fault Ride Through

Autores
Elhawash, M; Araújo, RE; Lopes, A;

Publicação
2025 IEEE Kiel PowerTech

Abstract
This paper presents a new power chain and its control scheme that provides highly flexible low voltage ride through (LVRT) capabilities for power converters that feed the stack of Polymer Electrolyte Membrane (PEM) hydrogen electrolyzers. It introduces an intermediate power stage with a new adaptive feedforward controller, that isolates the electrolyzer stack from grid-side disturbances. An RMS model of the whole solution is developed and validated. The system was developed in MATLAB/SIMULINK and PLECS environments. Furthermore, the system was tested in DC and AC grids by subjecting it to a fault reducing the input voltage magnitude down to 0.2 pu. The system demonstrated its ability to ride through the fault whilst maintaining the power set-points and supply quality at the electrolyzer stack connection point. © 2025 Elsevier B.V., All rights reserved.

  • 7
  • 345