Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CPES

2025

Generation of Power Network Operating Scenarios for an AI-friendly Digital Environment

Autores
Paulos J.; Silva P.R.; Bessa R.J.; Marot A.; Dejaegher J.; Donnot B.;

Publicação
2025 IEEE Kiel Powertech Powertech 2025

Abstract
With the growing need for AI-driven solutions in power grid management, this work addresses the challenge of creating realistic synthetic operating scenarios essential for developing, testing, and validating AI-based decision-making systems. It uses spatial-temporal noise functions, predefined patterns, and optimal power flow to model renewable energy and conventional power plant generation, load, and losses. Quantitative and visual key performance indicators are proposed to evaluate the quality of the generated operating scenarios, and the validation highlights the framework's ability to emulate diverse and practical operating scenarios, bridging gaps in AI-driven power system research and real-world applications.

2025

On the Definition of Robustness and Resilience of AI Agents for Real-time Congestion Management

Autores
Tjhay T.; Bessa R.J.; Paulos J.;

Publicação
2025 IEEE Kiel Powertech Powertech 2025

Abstract
The European Union's Artificial Intelligence (AI) Act defines robustness, resilience, and security requirements for high-risk sectors but lacks detailed methodologies for assessment. This paper introduces a novel framework for quantitatively evaluating the robustness and resilience of reinforcement learning agents in congestion management. Using the AI-friendly digital environment Grid2Op, perturbation agents simulate natural and adversarial disruptions by perturbing the input of AI systems without altering the actual state of the environment, enabling the assessment of AI performance under various scenarios. Robustness is measured through stability and reward impact metrics, while resilience quantifies recovery from performance degradation. The results demonstrate the framework's effectiveness in identifying vulnerabilities and improving AI robustness and resilience for critical applications.

2025

Dynamic incentives for electric vehicles charging at supermarket stations: Causal insights on demand flexibility

Autores
Silva, CAM; Andrade, JR; Ferreira, A; Gomes, A; Bessa, RJ;

Publicação
ENERGY

Abstract
Electric vehicles (EVs) are crucial in achieving a low-carbon transportation sector and can inherently offer demand-side flexibility by responding to price signals and incentives, yet real-world strategies to influence charging behavior remain limited. This paper combines bilevel optimization and causal machine learning as complementary tools to design and evaluate dynamic incentive schemes as part of a pilot project using a supermarket's EV charging station network. The bilevel model determines discount levels, while double machine learning quantifies the causal impact of these incentives on charging demand. The results indicate a marginal increase of 1.16 kW in charging demand for each one-percentage-point increase in discount. User response varies by hour and weekday, revealing treatment effect heterogeneity, insights that can inform business decision-making. While the two methods are applied independently, their combined use provides a framework for connecting optimization-based incentive design with data-driven causal evaluation. By isolating the impact of incentives from other drivers, the study sheds light on the potential of incentives to enhance demand-side flexibility in the electric mobility ecosystem.

2025

Economic and Environmental Optimization of EV Fleets Charging under MIBEL Day-ahead Spot Prices

Autores
Almeida, MF; Soares, FJ; Oliveira, FT;

Publicação
2025 21ST INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM

Abstract
This paper presents an optimization model for electric vehicle (EV) fleet charging under MIBEL (Iberian Electricity Market). The model integrates EV charging with day-ahead forecasting for grid energy prices, photovoltaic (PV) generation, and local power demand, combined with a battery energy storage system (BESS) to minimize total charging costs, reduce peak demand, and maximize renewable use. Simulations across Baseline, Certainty, and Uncertainty scenarios show that the proposed approach would reduce total charging costs by up to 49%, lower carbon emissions by 73.7%, and improve SOC compliance, while smoothing demand curves to mitigate excessive contracted power charges. The results demonstrate the economic and environmental benefits of predictive and adaptive EV charging strategies, highlighting opportunities for further enhancements through real-time adjustments and vehicle-to-grid (V2G) integration.

2025

Multiobjective energy management of multi-source offshore parks assisted with hybrid battery and hydrogen/fuel-cell energy storage systems

Autores
Kazemi-Robati, E; Varotto, S; Silva, B; Temiz, I;

Publicação
APPLIED ENERGY

Abstract
With the recent advancements in the development of hybrid offshore parks and the expected large-scale implementation of them in the near future, it becomes paramount to investigate proper energy management strategies to improve the integrability of these parks into the power systems. This paper addresses a multiobjective energy management approach using a hybrid energy storage system comprising batteries and hydrogen/fuel-cell systems applied to multi-source wind-wave and wind-solar offshore parks to maximize the delivered energy while minimizing the variations of the power output. To find the solution of the optimization problem defined for energy management, a strategy is proposed based on the examination of a set of weighting factors to form the Pareto front while the problem associated with each of them is assessed in a mixed-integer linear programming framework. Subsequently, fuzzy decision making is applied to select the final solution among the ones existing in the Pareto front. The studies are implemented in different locations considering scenarios for electrical system limitation and the place of the storage units. According to the results, applying the proposed multiobjective framework successfully addresses the enhancement of energy delivery and the decrease in power output fluctuations in the hybrid offshore parks across all scenarios of electrical system limitation and combinational storage locations. Based on the results, in addition to the increase in delivered energy, a decrease in power variations by around 40 % up to over 80 % is observed in the studied cases.

2025

Improving community-based electricity markets regulation: A holistic multi-objective optimization framework

Autores
Costa, VBF; Soares, T; Bitencourt, L; Dias, BH; Deccache, E; Silva, BMA; Bonatto, B; , WF; Faria, AS;

Publicação
RENEWABLE & SUSTAINABLE ENERGY REVIEWS

Abstract
Community-based electricity markets, which are defined as groups of members that share common interests in renewable distributed generation, allow prosumers to embrace more active roles by opening up several opportunities for trading electricity. At the same time, such markets may favor conventional consumers by allowing them to choose cheaper electricity providers. Due to trends in power sector modernization, community-based electricity markets are of great research interest, and there are already some associated models. However, there is a research gap in searching for integrated and holistic approaches that go beyond economic aspects, consider social and environmental aspects, and assume the balanced co-existence of community-based and conventional markets. This work fills this critical research gap by adapting/applying the optimized tariff model, Bass diffusion model, life cycle assessment, and multi-objective optimization to the context of community-based markets. Results indicate that favoring conventional markets in the short term and community-based markets in the medium term is beneficial. Moreover, regulated tariffs should increase slightly in the short/medium-term to accommodate DG growth. Additionally, community-based markets can decrease electricity expenses by around 13.6 % considering the market participants. Thus, such markets can be significantly beneficial in mitigating energy poverty.

  • 6
  • 345