2024
Autores
da Silva, CT; Dias, BMD; Araújo, RE; Pellini, EL; Laganá, AAM;
Publicação
BATTERIES-BASEL
Abstract
The methodology presented in this work allows for the creation of a real-time adjustment of Kalman Filter process noise for lithium battery state-of-charge estimation. This work innovates by creating a methodology for adjusting the process (Q) and measurement (R) Kalman Filter noise matrices in real-time. The filter algorithm with this adaptative mechanism achieved an average accuracy of 99.56% in real tests by comparing the estimated battery voltage and measured battery voltage. A cell-balancing strategy was also implemented, capable of guaranteeing the safety and efficiency of the battery pack in all conducted tests. This work presents all the methods, equations, and simulations necessary for the development of a battery management system and applies the system in a practical, real environment. The battery management system hardware and firmware were developed, evaluated, and validated on a battery pack with eight LiFePO4 cells, achieving excellent performance on all conducted tests.
2024
Autores
Anuradha, K; Iria, J; Mediwaththe, CP;
Publicação
Electric Power Systems Research
Abstract
2024
Autores
Attarha, A; Noori R.A., SM; Mahmoodi, M; Iria, J; Scott, P;
Publicação
Electric Power Systems Research
Abstract
2024
Autores
Russell, JS; Scott, P; Iria, J;
Publicação
Electric Power Systems Research
Abstract
2024
Autores
Reiz, C; Leite, JB; Gouveia, CS; Javadi, MS;
Publicação
ELECTRIC POWER SYSTEMS RESEARCH
Abstract
Microgrids are able to improve several features of power systems, such as energy efficiencies, operating costs and environmental impacts. Nevertheless, microgrids' protection must work congruently with power distribution protection to safely take all advantages. This research contributes to enable their protection by proposing a bilevel method to simultaneously solve the allocation and coordination problems, where the proposed scheme also includes local protections of distributed energy resources. The uncertainties associated with generation and loads are categorized by the k-means method, as well. The non-dominated sorting genetic algorithm II is employed in the upper-level task to solve the protection and control devices allocation problem with two opposing objectives. In the lower-level task, a genetic algorithm ensures their coordination. Protection devices include reclosers and fuses from the network, and directional relays for the point of common coupling of microgrids, while control devices consist of remote-controlled switches. In contrast to related works, local devices installed at the point of coupling of distributed generation units are considered as well, such as voltage-restrained overcurrent relays and frequency relays. The optimal solution for the decision-maker is achieved by utilizing the compromise programming technique. Results show the importance of solving the allocation and coordination problems simultaneously, achieving up to $25,000 cost savings compared to cases that solve these problems separately. The integrated strategy allows the network operator to select the optimum solution for the protective system and avoid corrective actions afterward. The results also show the viability of the islanding operation depending on the decision maker's criteria.
2024
Autores
Reiz, C; Alves, E; Melim, A; Gouveia, C; Carrapatoso, A;
Publicação
2024 IEEE 22ND MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, MELECON 2024
Abstract
The integration of inverter-based distributed generation challenges the implementation of an reliable protection This work proposes an adaptive protection method for coordinating protection systems using directional overcurrent relays, where the settings depend on the distribution network operating conditions. The coordination problem is addressed through a specialized genetic algorithm, aiming to minimize the total operating times of relays with time-delayed operation. The pickup current is also optimized. Coordination diagrams from diverse fault scenarios illustrate the method's adaptability to different operational conditions, emphasizing the importance of employing multiple setting groups for optimal protection system performance. The proposed technique provides high-quality solutions, enhancing reliability compared to traditional protection schemes.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.