2024
Autores
Gomes, I; Paulos, J; Bessa, RJ; Sousa, M; Rebelo, R;
Publicação
2024 INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND TECHNOLOGIES, SEST 2024
Abstract
The footwear industry is energy-intensive and, consequently, a source of large amounts of greenhouse gas emissions every year. Issues related to climate change and growing conflicts on a global scale that impact the prices of raw materials and energy prices have led companies in the footwear industry to take actions to mitigate these impacts. Among these actions is the growing focus on producing its energy from energy systems based on renewable sources and battery energy storage units. This paper addresses the energy-efficient manufacturing scheduling in footwear industries with onsite energy production from a photovoltaic system with batteries. The problem is formulated as a mixed integer linear programming problem. Different objectives are presented, depending on the priorities of the entity that owns the footwear factory, namely, minimizing operation costs, minimizing CO2 emissions, or both. The case study is footwear factory located in Portugal that uses a manufacturing process based on injection molding. The results show the effectiveness of the proposed approach, with active demand side management playing a fundamental role in shifting periods of higher energy consumption to periods of lower prices or lower CO2 emissions. Also, Pareto fronts are depicted to make the trade-off between CO2 emissions and operation costs. As expected, the reduction of CO2 emissions promotes an increase on operation costs. Furthermore, a sensitivity analysis is carried out on the increase in photovoltaic capacity and battery capacity. The results show that increasing photovoltaic and battery capacity promotes reductions in costs up to 30% and in the emissions up to 37%.
2024
Autores
Cremer, JL; Kelly, A; Bessa, RJ; Subasic, M; Papadopoulos, PN; Young, S; Sagar, A; Marot, A;
Publicação
2024 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE, ISGT EUROPE
Abstract
Advanced control, operation, and planning tools of electrical networks with ML are not straightforward. 110 experts were surveyed to show where and how ML algorithms could advance. This paper assesses this survey and research environment. Then, it develops an innovation roadmap that helps align our research community with a goal-oriented realisation of the opportunities that AI upholds. This paper finds that the R&D environment of system operators (and the surrounding research ecosystem) needs adaptation to enable faster developments with AI while maintaining high testing quality and safety. This roadmap serves system operators, academics, and labs advancing next-generation electrical network tools.
2024
Autores
Fonseca, NS; Soares, F; Iria, J;
Publicação
2024 20TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM 2024
Abstract
This paper proposes a planning optimization model to help distribution system operators (DSOs) decide on the most cost-effective investments to handle the wholesale market participation of distributed energy resources (DERs). Two investment options are contemplated: market redesign; and network augmentation. The market redesign is employed through a DSO framework used to coordinate the network-secure participation of DERs in wholesale markets. Network augmentation is achieved by investing in new HV/MV OLTC and MV/LV transformers. To evaluate the performance of our planning model, we used the IEEE 69-bus network with three DER aggregators operating under different DER scenarios. Our tests show that the planning problem suggests investment decisions that can help DSOs guarantee network security. Market redesign has shown to be the most cost-effective option. However, this option is not always viable, namely in scenarios where not enough DERs are available to provide network support services. In such scenarios, hybrid investment solutions are required.
2024
Autores
Félix, P; Oliveira, F; Soares, FJ;
Publicação
2024 20TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM 2024
Abstract
This paper presents a methodology for assessing the long-term economic feasibility of renewable energy-based systems for green hydrogen and ammonia production. A key innovation of this approach is the incorporation of a predictive algorithm that optimizes day-ahead system operation on an hourly basis, aiming to maximize profit. By integrating this feature, the methodology accounts for forecasting errors, leading to a more realistic economic evaluation. The selected case study integrates wind and PV as renewable energy sources, supplying an electrolyser and a Haber-Bosch ammonia production plant. Additionally, all supporting equipment, including an air separation unit for nitrogen production, compressors, and hydrogen / nitrogen / ammonia storage devices, is also considered. Furthermore, an electrochemical battery is included, allowing for an increased electrolyser load factor and smoother operating regimes. The results demonstrate the effectiveness of the proposed methodology, providing valuable insights and performance indicators for this type of energy systems, enabling informed decision-making by investors and stakeholders.
2024
Autores
Fontoura, J; Soares, FJ; Mourao, Z; Coelho, A;
Publicação
SUSTAINABLE ENERGY GRIDS & NETWORKS
Abstract
This paper introduces a mathematical model designed to optimise the operation of natural gas distribution networks, considering the injection of hydrogen in multiple nodes. The model is designed to optimise the quantity of hydrogen injected to maintain pressure, gas flows, and gas quality indexes (Wobbe index (WI) and higher heating value (HHV)) within admissible limits. This study also presents the maximum injection allowable of hydrogen correlated with the gas quality index variation. The model has been applied to a case study of a gas network with four distinct scenarios and implemented using Python. The findings of the case study quantify the maximum permitted volume of hydrogen in the network, the total savings in natural gas, and the reduction in carbon dioxide emissions. Lastly, a sensitivity analysis of injected hydrogen as a function of the Wobbe index (WI) and Higher Heating Value (HHV) limits relaxation.
2024
Autores
Coelho, A; Soares, F; Iria, J;
Publicação
2024 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE, ISGT EUROPE
Abstract
As the global community transitions towards decarbonization and sustainable energy, green hydrogen is emerging as a key clean energy carrier. This paper addresses the role of hydrogen in transportation, emphasizing the European Union's additionality principle for renewable energy sources in green hydrogen production. It introduces a model for optimally designing hydrogen fueling stations, considering electrolyzers, hydrogen storage, fuel cells, PV systems, and batteries. This model also considers the participation in electricity (energy and secondary reserve), hydrogen, and oxygen markets, and it is evaluated under different additionality policy scenarios. Results indicate that stricter additionality policies reduce the internal rate of return. However, participation in secondary reserve markets significantly boosts operational revenues and compensates for higher investment costs.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.