Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CPES

2025

Deep Learning for Multi-class Diagnosis of Thyroid Disorders Using Selective Features

Autores
Santana, F; Brito, J; Georgieva, P;

Publicação
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Abstract
Data-based approach for diagnosis of thyroid disorders is still at its early stage. Most of the research outcomes deal with binary classification of the disorders, i.e. presence or not of some pathology (cancer, hyperthyroidism, hypothyroidism, etc.). In this paper we explore deep learning (DL) models to improve the multi-class diagnosis of thyroid disorders, namely hypothyroid, hyperthyroid and no pathology thyroid. The proposed DL models, including DNN, CNN, LSTM, and a hybrid CNN-LSTM architecture, are inspired by state-of-the-art work and demonstrate superior performance, largely due to careful feature selection and the application of SMOTE for class balancing prior to model training. Our experiments show that the CNN-LSTM model achieved the highest overall accuracy of 99%, with precision, recall, and F1-scores all exceeding 92% across the three classes. The use of SMOTE for class balancing improved most of the model’s performance. These results indicate that the proposed DL models not only effectively distinguish between different thyroid conditions but also hold promise for practical implementation in clinical settings, potentially supporting healthcare professionals in more accurate and efficient diagnosis. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2025

The role of interventions in enhancing indoor environmental quality in higher education institutions for student well-being and academic performance

Autores
Andrade, C; Stathopoulos, S; Mourato, S; Yamasaki, N; Paschalidou, A; Bernardo, H; Papaloizou, L; Charalambidou, I; Achilleos, S; Psistaki, K; Sarris, E; Carvalho, F; Chaves, F;

Publicação
CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH

Abstract
Students spend 30 % of their lives indoors; therefore, a healthy indoor air quality (IAQ) is crucial for their well-being and academic performance in Higher Education Institutions. This review highlights the interventions for improving Indoor Enviclassrooms considering climate change by discussing ventilation techniques, phytoremediation, and building features designed to improve noise levels, thermal comfort, lighting and to reduce odor. Awareness and literacy are enhanced through the student's engagement by offering real-time monitoring knowledge of Indoor Environmental Quality using inexpensive smart sensors combined with IoT technology. Eco-friendly strategies are also highlighted to promote sustainability.

2025

Integrating Machine Learning and Digital Twins for Enhanced Smart Building Operation and Energy Management: A Systematic Review

Autores
Palley, B; Martins, JP; Bernardo, H; Rossetti, R;

Publicação
URBAN SCIENCE

Abstract
Artificial Intelligence has recently expanded across various applications. Machine Learning, a subset of Artificial Intelligence, is a powerful technique for identifying patterns in data to support decision making and managing the increasing volume of information. Simultaneously, Digital Twins have been applied in several fields. In this context, combining Digital Twins, Machine Learning, and Smart Buildings offers significant potential to improve energy efficiency and operational effectiveness in building management. This review aims to identify and analyze studies that explore the application of Machine Learning and Digital Twins for operation and energy management in Smart Buildings, providing an updated perspective on these rapidly evolving topics. The methodology follows the PRISMA guidelines for systematic reviews, using Scopus and Web of Science databases. This review identifies the main concepts, objectives, and trends emerging from the literature. Furthermore, the findings confirm the recent growth in research combining Machine Learning and Digital Twins for building management, revealing diverse approaches, tools, methods, and challenges. Finally, this paper highlights existing research gaps and outlines opportunities for future investigation.

2025

Optimisation-Based Sensitivity Analysis of PV and Energy Storage Sizing in Commercial Buildings

Autores
Santos, TB; Silva, CS; Bernardo, S;

Publicação
2025 9th International Young Engineers Forum on Electrical and Computer Engineering (YEF-ECE)

Abstract
In recent years, non-residential buildings have increasingly adopted renewable energy generation systems to align with the European Union's goal of achieving carbon neutrality by 2050. However, energy storage systems playa fundamental role in maximising the use of the generated renewable energy. Due to their high acquisition costs, adequately sizing these systems is essential. Moreover, applying an optimal scheduling strategy for energy storage operation can significantly improve the economic viability of such systems by reducing energy-related costs. In this paper, a MILP-based optimisation algorithm-incorporating battery lifespan constraints-is applied to a reference commercial building to schedule the operation of the storage system. A sensitivity analysis on the installed photovoltaic power and energy storage capacity is performed to evaluate their impact on the economic and operational performance of the optimisation algorithm under different sizing configurations. © 2025 Elsevier B.V., All rights reserved.

2025

Forecasting Power Demand in Complex Buildings Using Machine Learning: A Shopping Center Case Study

Autores
Palley, B; Bernardo, H; Martins, JP; Rossetti, R;

Publicação
TECHNOLOGICAL INNOVATION FOR AI-POWERED CYBER-PHYSICAL SYSTEMS, DOCEIS 2025

Abstract
Recent studies have focused on forecasting power demand in buildings to enhance energy management. However, the literature still lacks comparative analyses of power demand forecasting algorithms. In addition, more case studies involving different building typologies are needed, as each building exhibits distinct behavior and load profiles. This paper aims to develop machine learning models to forecast the power demand of a large shopping center in the northern region of Portugal. The main objective is to compare the performance of several machine learning models. The results are promising, demonstrating adequate performance even during most holidays.

2025

Can People Flow Enhance the Shared Energy Facility Management?

Autores
Zhao, AP; Li, SQ; Qian, T; Guan, AB; Cheng, X; Kim, J; Alhazmi, M; Hernando-Gil, I;

Publicação
IEEE TRANSACTIONS ON SMART GRID

Abstract
The effective management of shared resources within energy communities poses a significant challenge, particularly when balancing renewable energy generation and fluctuating demand. This paper introduces a novel optimization framework that integrates people flow data, modeled using the Social Force Model (SFM), with energy management strategies to enhance the efficiency and sustainability of energy communities. By combining SFM with the Non-dominated Sorting Genetic Algorithm III (NSGA-III), the framework addresses multi-objective optimization problems, including minimizing energy costs, reducing user waiting times, and maximizing renewable energy utilization. The study employs synthesized data to simulate an energy community with shared facilities such as electric vehicle (EV) charging stations, communal kitchens, and laundry rooms. Results demonstrate the framework's ability to align energy generation with resource demand, reducing peak loads and improving user satisfaction. The optimization model effectively incorporates real-time behavioral dynamics, showcasing significant improvements in renewable energy utilization-reaching up to 88% for EV charging stations-and cost reductions across various scenarios. This research pioneers the integration of people flow modeling into energy optimization, providing a robust tool for managing the complexities of energy communities.

  • 15
  • 362