Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Miriam Seoane Santos

2023

A unifying view of class overlap and imbalance: Key concepts, multi-view panorama, and open avenues for research

Autores
Santos, MS; Abreu, PH; Japkowicz, N; Fernandez, A; Santos, J;

Publicação
INFORMATION FUSION

Abstract
The combination of class imbalance and overlap is currently one of the most challenging issues in machine learning. While seminal work focused on establishing class overlap as a complicating factor for classification tasks in imbalanced domains, ongoing research mostly concerns the study of their synergy over real-word applications. However, given the lack of a well-formulated definition and measurement of class overlap in real-world domains, especially in the presence of class imbalance, the research community has not yet reached a consensus on the characterisation of both problems. This naturally complicates the evaluation of existing approaches to address these issues simultaneously and prevents future research from moving towards the devise of specialised solutions. In this work, we advocate for a unified view of the problem of class overlap in imbalanced domains. Acknowledging class overlap as the overarching problem - since it has proven to be more harmful for classification tasks than class imbalance - we start by discussing the key concepts associated to its definition, identification, and measurement in real-world domains, while advocating for a characterisation of the problem that attends to multiple sources of complexity. We then provide an overview of existing data complexity measures and establish the link to what specific types of class overlap problems these measures cover, proposing a novel taxonomy of class overlap complexity measures. Additionally, we characterise the relationship between measures, the insights they provide, and discuss to what extent they account for class imbalance. Finally, we systematise the current body of knowledge on the topic across several branches of Machine Learning (Data Analysis, Data Preprocessing, Algorithm Design, and Meta-learning), identifying existing limitations and discussing possible lines for future research.

2020

How distance metrics influence missing data imputation with k-nearest neighbours

Autores
Santos, MS; Abreu, PH; Wilk, S; Santos, J;

Publicação
PATTERN RECOGNITION LETTERS

Abstract
In missing data contexts, k-nearest neighbours imputation has proven beneficial since it takes advantage of the similarity between patterns to replace missing values. When dealing with heterogeneous data, researchers traditionally apply the HEOM distance, that handles continuous, nominal and missing data. Although other heterogeneous distances have been proposed, they have not yet been investigated and compared for k-nearest neighbours imputation. In this work, we study the effect of several heterogeneous distances on k-nearest neighbours imputation on a large benchmark of publicly-available datasets.

2020

Assessing the Impact of Distance Functions on K-Nearest Neighbours Imputation of Biomedical Datasets

Autores
Santos, MS; Abreu, PH; Wilk, S; Santos, JAM;

Publicação
Artificial Intelligence in Medicine - 18th International Conference on Artificial Intelligence in Medicine, AIME 2020, Minneapolis, MN, USA, August 25-28, 2020, Proceedings

Abstract
In healthcare domains, dealing with missing data is crucial since absent observations compromise the reliability of decision support models. K-nearest neighbours imputation has proven beneficial since it takes advantage of the similarity between patients to replace missing values. Nevertheless, its performance largely depends on the distance function used to evaluate such similarity. In the literature, k-nearest neighbours imputation frequently neglects the nature of data or performs feature transformation, whereas in this work, we study the impact of different heterogeneous distance functions on k-nearest neighbour imputation for biomedical datasets. Our results show that distance functions considerably impact the performance of classifiers learned from the imputed data, especially when data is complex. © 2020, Springer Nature Switzerland AG.

2018

Cross-Validation for Imbalanced Datasets: Avoiding Overoptimistic and Overfitting Approaches

Autores
Santos, MS; Soares, JP; Abreu, PH; Araujo, H; Santos, J;

Publicação
IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE

Abstract
Although cross-validation is a standard procedure for performance evaluation, its joint application with oversampling remains an open question for researchers farther from the imbalanced data topic. A frequent experimental flaw is the application of oversampling algorithms to the entire dataset, resulting in biased models and overly-optimistic estimates. We emphasize and distinguish overoptimism from overfitting, showing that the former is associated with the cross-validation procedure, while the latter is influenced by the chosen oversampling algorithm. Furthermore, we perform a thorough empirical comparison of well-established oversampling algorithms, supported by a data complexity analysis. The best oversampling techniques seem to possess three key characteristics: use of cleaning procedures, cluster-based example synthetization and adaptive weighting of minority examples, where Synthetic Minority Oversampling Technique coupled with Tomek Links and Majority Weighted Minority Oversampling Technique stand out, being capable of increasing the discriminative power of data.

2018

Exploring the effects of data distribution in missing data imputation

Autores
Pompeu Soares, J; Seoane Santos, M; Henriques Abreu, P; Araújo, H; Santos, J;

Publicação
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Abstract
In data imputation problems, researchers typically use several techniques, individually or in combination, in order to find the one that presents the best performance over all the features comprised in the dataset. This strategy, however, neglects the nature of data (data distribution) and makes impractical the generalisation of the findings, since for new datasets, a huge number of new, time consuming experiments need to be performed. To overcome this issue, this work aims to understand the relationship between data distribution and the performance of standard imputation techniques, providing a heuristic on the choice of proper imputation methods and avoiding the needs to test a large set of methods. To this end, several datasets were selected considering different sample sizes, number of features, distributions and contexts and missing values were inserted at different percentages and scenarios. Then, different imputation methods were evaluated in terms of predictive and distributional accuracy. Our findings show that there is a relationship between features’ distribution and algorithms’ performance, and that their performance seems to be affected by the combination of missing rate and scenario at state and also other less obvious factors such as sample size, goodness-of-fit of features and the ratio between the number of features and the different distributions comprised in the dataset. © Springer Nature Switzerland AG 2018.

2022

The impact of heterogeneous distance functions on missing data imputation and classification performance

Autores
Santos, MS; Abreu, PH; Fernandez, A; Luengo, J; Santos, J;

Publicação
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE

Abstract
This work performs an in-depth study of the impact of distance functions on K-Nearest Neighbours imputation of heterogeneous datasets. Missing data is generated at several percentages, on a large benchmark of 150 datasets (50 continuous, 50 categorical and 50 heterogeneous datasets) and data imputation is performed using different distance functions (HEOM, HEOM-R, HVDM, HVDM-R, HVDM-S, MDE and SIMDIST) and k values (1, 3, 5 and 7). The impact of distance functions on kNN imputation is then evaluated in terms of classification performance, through the analysis of a classifier learned from the imputed data, and in terms of imputation quality, where the quality of the reconstruction of the original values is assessed. By analysing the properties of heterogeneous distance functions over continuous and categorical datasets individually, we then study their behaviour over heterogeneous data. We discuss whether datasets with different natures may benefit from different distance functions and to what extent the component of a distance function that deals with missing values influences such choice. Our experiments show that missing data has a significant impact on distance computation and the obtained results provide guidelines on how to choose appropriate distance functions depending on data characteristics (continuous, categorical or heterogeneous datasets) and the objective of the study (classification or imputation tasks).

  • 2
  • 6