Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por LIAAD

2023

Energy Sharing Models in Renewable Energy Communities

Autores
Araújo, I; Grasel, B; Cerveira, A; Baptista, J;

Publicação
International Conference on Electrical, Computer and Energy Technologies, ICECET 2023, Cape Town, South Africa, November 16-17, 2023

Abstract
Renewable energy communities (REC) are an increasingly interesting solution for all energy market stakeholders. In RECs consumers and producers come together to form energy cooperatives with a strong incorporation of renewables in order to make the market and energy trading more advantageous for both sides. This growing trend has been followed by several studies aimed at understanding which are the best models for energy sharing within the community. This paper proposes different models of energy sharing within the community and evaluates their efficiency. Energy sharing can be based on constant coefficients or variable coefficients based on the net consumption of the self-consumers. This study proposes a new methodology based on a hybrid model. The results show the advantages and challenges of the individual energy-sharing models, showing that up to 41% of the energy imports from the grid can be reduced. © 2023 IEEE.

2023

Wind Farm Cable Connection Layout Optimization Using a Genetic Algorithm and Integer Linear Programming

Autores
Pires, EJS; Cerveira, A; Baptista, J;

Publicação
COMPUTATION

Abstract
This work addresses the wind farm (WF) optimization layout considering several substations. It is given a set of wind turbines jointly with a set of substations, and the goal is to obtain the optimal design to minimize the infrastructure cost and the cost of electrical energy losses during the wind farm lifetime. The turbine set is partitioned into subsets to assign to each substation. The cable type and the connections to collect wind turbine-produced energy, forwarding to the corresponding substation, are selected in each subset. The technique proposed uses a genetic algorithm (GA) and an integer linear programming (ILP) model simultaneously. The GA creates a partition in the turbine set and assigns each of the obtained subsets to a substation to optimize a fitness function that corresponds to the minimum total cost of the WF layout. The fitness function evaluation requires solving an ILP model for each substation to determine the optimal cable connection layout. This methodology is applied to four onshore WFs. The obtained results show that the solution performance of the proposed approach reaches up to 0.17% of economic savings when compared to the clustering with ILP approach (an exact approach).

2023

Energy Flows Optimization in a Renewable Energy Community with Storage Systems Integration

Autores
Araújo, I; Cerveira, A; Baptista, J;

Publicação
Renewable Energy and Power Quality Journal

Abstract
Currently, there is increasing implementation of renewable energy communities, where consumers and producers come together to form energy cooperatives. This growing trend has been accompanied by several studies aiming to optimize energy exchanges and sharing inside the community, always taking into account the most favorable tariff regimes for community members. This paper presents an analysis that, based on applying a linear programming model, optimizes energy transactions in a renewable energy community with the integration of storage systems. The results show the developed model's effectiveness, presenting substantial profits for the community.

2023

Offshore Wind Farm Layout Optimisation Considering Wake Effect and Power Losses

Autores
Baptista, J; Jesus, B; Cerveira, A; Pires, EJS;

Publicação
SUSTAINABILITY

Abstract
The last two decades have witnessed a new paradigm in terms of electrical energy production. The production of electricity from renewable sources has come to play a leading role, thus allowing us not only to face the global increase in energy consumption, but also to achieve the objectives of decarbonising the economies of several countries. In this scenario, where onshore wind energy is practically exhausted, several countries are betting on constructing offshore wind farms. Since all the costs involved are higher when compared to onshore, optimising the efficiency of this type of infrastructure as much as possible is essential. The main aim of this paper was to develop an optimisation model to find the best wind turbine locations for offshore wind farms and to obtain the wind farm layout to maximise the profit, avoiding cable crossings, taking into account the wake effect and power losses. The ideal positioning of wind turbines is important for maximising the production of electrical energy. Furthermore, a techno-economic analysis was performed to calculate the main economic indicators, namely the net present value, the internal rate of return, and the payback period, to support the decision-making. The results showed that the developed model found the best solution that maximised the profits of the wind farm during its lifetime. It also showed that the location of the offshore substation played a key role in achieving these goals.

2023

Solving a harvest scheduling optimization problem with constraints on clearcut area and clearcut proximity

Autores
Martins, I; Alvelos, F; Cerveira, A; Kaspar, J; Marusák, R;

Publicação
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH

Abstract
This study aims at solving a harvesting scheduling optimization problem with constraints on the clearcut area with additional constraints on clearcut proximity. The objective function is defined as the net present value generated by harvesting discounted by a penalty for each clearcut. This problem arises to reduce the negative environmental impact of excessive harvesting. We propose the connected-bucket model, the so-called bucket model with additional constraints on bucket connectivity and two definitions of stand adjacency, and a Dantzig-Wolfe decomposition. The decomposed model is solved by branch-and-price and the connected-bucket model by a general-purpose mixed integer programming solver (CPLEX). We compare the quality of the solutions obtained with both approaches for real instances. The branch-and-price approach found better solutions for the majority of the instances.

2023

Impact of Fire Recurrence and Induced Water Stress on Seed Germination and Root Mitotic Cell Cycle of Pinus pinaster Aiton

Autores
Ribeiro, S; Gaspar, MJ; Lima-Brito, J; Fonseca, T; Soares, P; Cerveira, A; Fernandes, PM; Louzada, J; Carvalho, A;

Publicação
FORESTS

Abstract
Climate change will increase the frequency of drought, heat waves, and wildfires. We intended to analyse how fire recurrence and/or induced water stress can affect seed germination and root cell division in Pinus pinaster Aiton. Seeds from stands with no prior fire history and from post-fire regeneration (in areas burnt once, twice, and thrice) in northern Portugal were germinated in distilled water (control) and polyethylene glycol (PEG) to simulate water stress for four weeks, followed by a recovery period. Roots were analysed cytogenetically. The germination index of the Pinus pinaster seeds was not statistically influenced by the induction of osmotic stress, nor by the fire recurrence of the stands. The mean germination time (MGT) was 10-29 days and 1-36 days for the stress and recovery periods, respectively, and increased with PEG concentration. The 20% PEG treatment inhibited root growth after germination. The 10% PEG treatment induced a high frequency of cytogenetic anomalies, mostly in the sites which experienced fire exposure. While fire recurrence did not affect the germination rate, it seemed to reduce the water stress response, negatively impacting cell division and impair root growth.

  • 91
  • 515