2025
Autores
Barbosa, M; Ribeiro, C; Gomes, F; Ribeiro, RP; Gama, J;
Publicação
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2023, PT II
Abstract
The rise of environmental crimes has become a major concern globally as they cause significant damage to ecosystems, public health and result in economic losses. The availability of vast sensor data provides an opportunity to analyze environmental data proactively. This helps to detect irregularities and uncover potential criminal activities. This paper highlights the critical role played by machine learning (ML) and remote sensing technologies in the continuously evolving scenarios of environmental crime. By examining some case studies on detecting illegal fishing, illegal oil spills, illegal landfills, and illegal logging, we delve into the practical implementation of data-driven approaches for environmental crime detection. Our goal with this study is to provide an overview of the existing research in this area and foster the use of ML and data science techniques to enhance environmental crime detection.
2025
Autores
Loureiro, P; Oliveira, M; Brito, P; Oliveira, L;
Publicação
Springer Proceedings in Mathematics and Statistics
Abstract
Air pollution is a global challenge with deep implications in public health and environment. We examine air quality data from a monitoring station in Entrecampos, Lisbon, Portugal, using Symbolic Data Analysis. The dataset consists of hourly concentrations of nine pollutants during three years, which are logarithmically transformed and aggregated in intervals, taking the daily minimum and maximum values. The symbolic mean and variance are estimated for each variable through the method of moments, and the pairwise dependencies are captured using a bivariate copula. Symbolic principal component scores are obtained from the estimated covariance matrix and used to fit generalized extreme value distributions. Outlier maps, based on these distributions’ quantiles, are used to identify outlying observations. A comparative analysis with daily average-based outlier detection methods is conducted. The results show the relevance of Symbolic Data Analysis in revealing new insights into air quality. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
2025
Autores
Brito, P; Silva, APD;
Publicação
ADVANCES IN DATA ANALYSIS AND CLASSIFICATION
Abstract
We present parametric probabilistic models for numerical distributional variables. The proposed models are based on the representation of each distribution by a location measure and inter-quantile ranges, for given quantiles, thereby characterizing the underlying empirical distributions in a flexible way. Multivariate Normal distributions are assumed for the whole set of indicators, considering alternative structures of the variance-covariance matrix. For all cases, maximum likelihood estimators of the corresponding parameters are derived. This modelling allows for hypothesis testing and multivariate parametric analysis. The proposed framework is applied to Analysis of Variance and parametric Discriminant Analysis of distributional data. A simulation study examines the performance of the proposed models in classification problems under different data conditions. Applications to Internet traffic data and Portuguese official data illustrate the relevance of the proposed approach.
2025
Autores
Inácio, R; Cerqueira, V; Barandas, M; Soares, C;
Publicação
Mach. Learn.
Abstract
2025
Autores
Vitorino, J; Maia, E; Praça, I; Soares, C;
Publicação
CoRR
Abstract
2025
Autores
Pereira, RR; Bono, J; Ferreira, HM; Ribeiro, P; Soares, C; Bizarro, P;
Publicação
ECML/PKDD (9)
Abstract
When the available data for a target domain is limited, transfer learning (TL) methods leverage related data-rich source domains to train and evaluate models, before deploying them on the target domain. However, most TL methods assume fixed levels of labeled and unlabeled target data, which contrasts with real-world scenarios where both data and labels arrive progressively over time. As a result, evaluations based on these static assumptions may not reflect how methods perform in practice. To support a more realistic assessment of TL methods in dynamic settings, we propose an evaluation framework that (1) simulates varying data availability over time, (2) creates multiple domains via resampling of a given dataset and (3) introduces inter-domain variability through controlled transformations, e.g., including time-dependent covariate and concept shifts. These capabilities enable the systematic simulation of a large number of variants of the experiments, providing deeper insights into how algorithms may behave when deployed. We demonstrate the usefulness of the proposed framework by performing a case study on a proprietary real-world suite of card payment datasets. To support reproducibility, we also apply the framework on the publicly available Bank Account Fraud (BAF) dataset. By providing a methodology for evaluating TL methods over time and in different data availability conditions, our framework supports a better understanding of model behavior in real-world environments, which enables more informed decisions when deploying models in new domains.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.