Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por LIAAD

2024

VEST: automatic feature engineering for forecasting

Autores
Cerqueira, V; Moniz, N; Soares, C;

Publicação
MACHINE LEARNING

Abstract
Time series forecasting is a challenging task with applications in a wide range of domains. Auto-regression is one of the most common approaches to address these problems. Accordingly, observations are modelled by multiple regression using their past lags as predictor variables. We investigate the extension of auto-regressive processes using statistics which summarise the recent past dynamics of time series. The result of our research is a novel framework called VEST, designed to perform feature engineering using univariate and numeric time series automatically. The proposed approach works in three main steps. First, recent observations are mapped onto different representations. Second, each representation is summarised by statistical functions. Finally, a filter is applied for feature selection. We discovered that combining the features generated by VEST with auto-regression significantly improves forecasting performance in a database composed by 90 time series with high sampling frequency. However, we also found that there are no improvements when the framework is applied for multi-step forecasting or in time series with low sample size. VEST is publicly available online.

2024

METAFORE: algorithm selection for decomposition-based forecasting combinations

Autores
Santos, M; de Carvalho, A; Soares, C;

Publicação
INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS

Abstract
Time series forecasting is an important tool for planning and decision-making. Considering this, several forecasting algorithms can be used, with results depending on the characteristics of the time series. The recommendation of the most suitable algorithm is a frequent concern. Metalearning has been successfully used to recommend the best algorithm for a time series analysis task. Additionally, it has been shown that decomposition methods can lead to better results. Based on previously published studies, in the experiments carried out, time series components were used. This work proposes and empirically evaluates METAFORE, a new time series forecasting approach that uses seasonal trend decomposition with Loess and metalearning to recommend suitable algorithms for time series forecasting combinations. Experimental results show that METAFORE can obtain a better predictive performance than single models with statistical significance. In the experiments, METAFORE also outperformed models widely used in the state-of-the-art, such as the long short-term memory neural network architectures, in more than 70%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$70\%$$\end{document} of the time series tested. Finally, the results show that the joint use of metalearning and time series decomposition provides a competitive approach to time series forecasting.

2024

CNP-MLDM: Contract Net Protocol for Negotiation in Machine Learning Data Market

Autores
Baghcheband, H; Soares, C; Reis, LP;

Publicação
Proceedings of the Discovery Science Late Breaking Contributions 2024 (DS-LB 2024) co-located with 27th International Conference Discovery Science 2024 (DS 2024), Pisa, Italy, 14-16 October 2024.

Abstract
The Machine Learning Data Market (MLDM), which relies on multi-agent systems, necessitates robust negotiation strategies to ensure efficient and fair transactions. The Contract Net Protocol (CNP), a well-established negotiation strategy within Multi-Agent Systems (MAS), offers a promising solution. This paper explores the integration of CNP into MLDM, proposing the CNP-MLDM model to facilitate data exchanges. Characterized by its task announcement and bidding process, CNP enhances negotiation efficiency in MLDM. This paper describes CNP tailored for MLDM, detailing the proposed protocol following experimental results. © 2022 Copyright for this paper by its authors.

2024

Tabular data generation with tensor contraction layers and transformers

Autores
Silva, A; Restivo, A; Santos, M; Soares, C;

Publicação
CoRR

Abstract

2024

Meta-TadGAN: Time Series Anomaly Detection Using TadGAN with Meta-features

Autores
Silva, IOe; Soares, C; Cerqueira, V; Rodrigues, A; Bastardo, P;

Publicação
Progress in Artificial Intelligence - 23rd EPIA Conference on Artificial Intelligence, EPIA 2024, Viana do Castelo, Portugal, September 3-6, 2024, Proceedings, Part III

Abstract
TadGAN is a recent algorithm with competitive performance on time series anomaly detection. The detection process of TadGAN works by comparing observed data with generated data. A challenge in anomaly detection is that there are anomalies which are not easy to detect by analyzing the original time series but have a clear effect on its higher-order characteristics. We propose Meta-TadGAN, an adaptation of TadGAN that analyzes meta-level representations of time series. That is, it analyzes a time series that represents the characteristics of the time series, rather than the original time series itself. Results on benchmark datasets as well as real-world data from fire detectors shows that the new method is competitive with TadGAN. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2024

Enhancing Algorithm Performance Understanding through tsMorph: Generating Semi-Synthetic Time Series for Robust Forecasting Evaluation

Autores
Santos, M; de Carvalho, ACPLF; Soares, C;

Publicação
Proceedings of the 2nd Workshop on Fairness and Bias in AI co-located with 27th European Conference on Artificial Intelligence (ECAI 2024), Santiago de Compostela, Spain, October 20th, 2024.

Abstract
When never produced as much data as today, and tomorrow will probably produce even more data. The increase is due not only to the larger number of data sources, but also because the source can continuously produce more recent data. The discovery of temporal patterns in continuously generated data is the main goal in many forecasting tasks, such as the average value of a currency or the average temperature in a city, in the next day. In these tasks, it is assumed that the time difference between two consecutive values produced by the same source is constant, and the sequence of values form a time series. The importance, and the very large number, of time series forecasting tasks make them one of the most popular data analysis application, which has been dealt with by a large number of different methods. Despite its popularity, there is a dearth of research aimed at comprehending the conditions under which these methods present high or poor forecasting performances. Empirical studies, although common, are challenged by the limited availability of time series datasets, restricting the extraction of reliable insights. To address this limitation, we present tsMorph, a tool for generating semi-synthetic time series through dataset morphing. tsMorph works by creating a sequence of datasets from two original datasets. The characteristics of the generated datasets progressively depart from those of one of the datasets and a convergence toward the attributes of the other dataset. This method provides a valuable alternative for obtaining substantial datasets. In this paper, we show the benefits of tsMorph by assessing the predictive performance of the Long Short-Term Memory Network and DeepAR forecasting algorithms. The time series used for the experiments come from the NN5 Competition. The experimental results provide important insights. Notably, the performances of the two algorithms improve proportionally with the frequency of the time series. These experiments confirm that tsMorph can be an effective tool for better understanding the behaviour of forecasting algorithms, delivering a pathway to overcoming the limitations posed by empirical studies and enabling more extensive and reliable experiments. Furthermore, tsMorph can promote Responsible Artificial Intelligence by emphasising characteristics of time series where forecasting algorithms may not perform well, thereby highlighting potential limitations. © 2024 Copyright for this paper by its authors.

  • 38
  • 515