2019
Autores
Silva, ME; Pereira, I; McCabe, B;
Publicação
JOURNAL OF TIME SERIES ANALYSIS
Abstract
This work investigates outlier detection and modelling in non-Gaussian autoregressive time series models with margins in the class of a convolution closed parametric family. This framework allows for a wide variety of models for count and positive data types. The article investigates additive outliers which do not enter the dynamics of the process but whose presence may adversely influence statistical inference based on the data. The Bayesian approach proposed here allows one to estimate, at each time point, the probability of an outlier occurrence and its corresponding size thus identifying the observations that require further investigation. The methodology is illustrated using simulated and observed data sets.
2019
Autores
Faes, L; Pereira, MA; Silva, ME; Pernice, R; Busacca, A; Javorka, M; Rocha, AP;
Publicação
PHYSICAL REVIEW E
Abstract
Information storage, reflecting the capability of a dynamical system to keep predictable information during its evolution over time, is a key element of intrinsic distributed computation, useful for the description of the dynamical complexity of several physical and biological processes. Here we introduce a parametric approach which allows one to compute information storage across multiple timescales in stochastic processes displaying both short-term dynamics and long-range correlations (LRC). Our analysis is performed in the popular framework of multiscale entropy, whereby a time series is first "coarse grained" at the chosen timescale through low-pass filtering and downsampling, and then its complexity is evaluated in terms of conditional entropy. Within this framework, our approach makes use of linear fractionally integrated autoregressive (ARFI) models to derive analytical expressions for the information storage computed at multiple timescales. Specifically, we exploit state space models to provide the representation of lowpass filtered and downsampled ARFI processes, from which information storage is computed at any given timescale relating the process variance to the prediction error variance. This enhances the practical usability of multiscale information storage, as it enables a computationally reliable quantification of a complexity measure which incorporates the effects of LRC together with that of short-term dynamics. The proposed measure is first assessed in simulated ARFI processes reproducing different types of autoregressive dynamics and different degrees of LRC, studying both the theoretical values and the finite sample performance. We find that LRC alter substantially the complexity of ARFI processes even at short timescales, and that reliable estimation of complexity can be achieved at longer timescales only when LRC are properly modeled. Then, we assess multiscale information storage in physiological time series measured in humans during resting state and postural stress, revealing unprecedented responses to stress of the complexity of heart period and systolic arterial pressure variability, which are related to the different role played by LRC in the two conditions.
2019
Autores
Sohan, MF; Rahman, SSMM; Munna, MTA; Allayear, SM; Rahman, MH; Rahman, MM;
Publicação
Communications in Computer and Information Science - Next Generation Computing Technologies on Computational Intelligence
Abstract
2019
Autores
Younus, M; Munna, MTA; Alam, MM; Allayear, SM; Ara, SJF;
Publicação
Studies in Big Data - Data Management and Analysis
Abstract
2019
Autores
Munna M.T.A.; Alam M.M.; Allayear S.M.; Sarker K.; Ara S.J.F.;
Publicação
Advances in Intelligent Systems and Computing
Abstract
In today’s era, most of the people are suffering with chronic diseases because of their lifestyle, food habits and reduction in physical activities. Diabetes is one of the most common chronic diseases which has affected to the people of all ages. Diabetes complication arises in human body due to increase of blood glucose (sugar) level than the normal level. Type-2 diabetes is considered as one of the most prevalent endocrine disorders. In this circumstance, we have tried to apply Machine learning algorithm to create the statistical prediction based model that people having diabetes can be aware of their prevalence. The aim of this paper is to detect the prevalence of diabetes relevant complications among patients with Type-2 diabetes mellitus. The processing and statistical analysis we used are Scikit-Learn, and Pandas for Python. We also have used unsupervised Machine Learning approaches known as Artificial Neural Network (ANN) and K-means Clustering for developing classification system based prediction model to judge Type-2 diabetes mellitus chronic diseases.
2019
Autores
Oliveira, AC; Domingues, I; Duarte, H; Santos, J; Abreu, PH;
Publicação
PATTERN RECOGNITION AND IMAGE ANALYSIS, IBPRIA 2019, PT II
Abstract
Radiotherapy planning is a crucial task in cancer patients’ management. This task is, however, very time consuming and prone to a high intra and inter subject variance and human errors. In this way, the present line of work aims at developing a tool to help the specialists in this task. The developed tool will consider the delimitation of anatomical regions of interest, since it is crucial to identify the organs at risk and minimize the exposure of these organs to the radiation. This paper, in particular, presents a lung segmentation algorithm, based on image processing techniques, such as intensity projection and region growing, for Computed Tomography volumes. Our pipeline consists in first separating two halves of the volume to isolate each lung. Then, three techniques for seed placement are developed. Finally, a traditional region growing algorithm has been changed in order to automatically derive the value of the threshold parameter. The results obtained for the three different techniques for seed placement were, respectively, 74%, 74% and 92% of DICE with the Iterative Region Growing algorithm. Although the presented results have as use case the Hodgkin Lymphoma, we believe that the developed method is generalizable to any other pathology. © 2019, Springer Nature Switzerland AG.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.