2024
Autores
Saavedra, N; Ferreira, JF; Mendes, A;
Publicação
ERCIM NEWS
Abstract
GLITCH is a versatile tool designed for detecting code smells in Infrastructure as Code (IaC) scripts across multiple technologies. Developed by researchers from INESC-ID (Lisbon), INESC TEC (Porto), Instituto Superior T & eacute;cnico / University of Lisbon, and the Faculty of Engineering / University of Porto, GLITCH automates the detection of both security and design flaws in scripts written in Ansible, Chef, Docker, Puppet, and Terraform. By using a technology-agnostic framework, GLITCH aims to improve the consistency and efficiency of code smell detection, making it valuable resource for DevOps engineers and researchers focused on software quality.
2024
Autores
Rodrigues, B; Amorim, I; Silva, I; Mendes, A;
Publicação
COMPUTER SECURITY. ESORICS 2023 INTERNATIONAL WORKSHOPS, PT I
Abstract
The exponential growth in the digitisation of services implies the handling and storage of large volumes of data. Businesses and services see data sharing and crossing as an opportunity to improve and produce new business opportunities. The health sector is one area where this proves to be true, enabling better and more innovative treatments. Notwithstanding, this raises concerns regarding personal data being treated and processed. In this paper, we present a patient-centric platform for the secure sharing of health records by shifting the control over the data to the patient, therefore, providing a step further towards data sovereignty. Data sharing is performed only with the consent of the patient, allowing it to revoke access at any given time. Furthermore, we also provide a break-glass approach, resorting to Proxy Re-encryption (PRE) and the concept of a centralised trusted entity that possesses instant access to patients' medical records. Lastly, an analysis is made to assess the performance of the platform's key operations, and the impact that a PRE scheme has on those operations.
2024
Autores
Oliveira, A; Cepa, B; Brito, C; Sousa, A;
Publicação
Abstract
2024
Autores
Oliveira, A; Cepa, B; Brito, C; Sousa, A;
Publicação
Abstract
2024
Autores
Brito, C; Ferreira, P; Paulo, J;
Publicação
Abstract
2024
Autores
Reascos, L; Carneiro, F; Pereira, A; Castro, NF; Ribeiro, RM;
Publicação
COMPUTER PHYSICS COMMUNICATIONS
Abstract
Density functional calculation of electronic structures of materials is one of the most used techniques in theoretical solid state physics. These calculations retrieve single electron wavefunctions and their eigenenergies. The berry suite of programs amplifies the usefulness of DFT by ordering the eigenstates in analytic bands, allowing the differentiation of the wavefunctions in reciprocal space. It can then calculate Berry connections and curvatures and the second harmonic generation conductivity. The berry software is implemented for two dimensional materials and was tested in hBN and InSe. In the near future, more properties and functionalities are expected to be added.Program summary Program Title: berry CPC Library link to program files: https://doi .org /10 .17632 /mpbbksz2t7 .1 Developer's repository link: https://github .com /ricardoribeiro -2020 /berry Licensing provisions: MIT Programming language: Python3 Nature of problem: Differentiation of Bloch wavefunctions in reciprocal space, numerically obtained from a DFT software, applied to two dimensional materials. This enables the numeric calculation of material's properties such as Berry geometries and Second Harmonic conductivity. Solution method: Extracts Kohn-Sham functions from a DFT calculation, orders them by analytic bands using graph and AI methods and calculates the gradient of the wavefunctions along an electronic band. Additional comments including restrictions and unusual features: Applies only to two dimensional materials, and only imports Kohn-Sham functions from Quantum Espresso package.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.