Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CTM

2024

Deep Learning-based Prediction of Breast Cancer Tumor and Immune Phenotypes from Histopathology

Autores
Gonçalves, T; Arias, DP; Willett, J; Hoebel, KV; Cleveland, MC; Ahmed, SR; Gerstner, ER; Cramer, JK; Cardoso, JS; Bridge, CP; Kim, AE;

Publicação
CoRR

Abstract

2024

Weather and Meteorological Optical Range Classification for Autonomous Driving

Autores
Pereira, C; Cruz, RPM; Fernandes, JND; Pinto, JR; Cardoso, JS;

Publicação
IEEE Trans. Intell. Veh.

Abstract

2024

REPRODUCING ASYMMETRIES CAUSED BY BREAST CANCER TREATMENT IN PRE-OPERATIVE BREAST IMAGES

Autores
Freitas, N; Montenegro, H; Cardoso, MJ; Cardoso, JS;

Publicação
IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI 2024

Abstract
Breast cancer locoregional treatment causes alterations to the physical aspect of the breast, often negatively impacting the self-esteem of patients unaware of the possible aesthetic outcomes of those treatments. To improve patients' self-esteem and enable a more informed choice of treatment when multiple options are available, the possibility to predict how the patient might look like after surgery would be of invaluable help. However, no work has been proposed to predict the aesthetic outcomes of breast cancer treatment. As a first step, we compare traditional computer vision and deep learning approaches to reproduce asymmetries of post-operative patients on pre-operative breast images. The results suggest that the traditional approach is better at altering the contour of the breast. In contrast, the deep learning approach succeeds in realistically altering the position and direction of the nipple.

2024

ON THE SUITABILITY OF B-COS NETWORKS FOR THE MEDICAL DOMAIN

Autores
Rio-Torto, I; Gonçalves, T; Cardoso, JS; Teixeira, LF;

Publicação
IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI 2024

Abstract
In fields that rely on high-stakes decisions, such as medicine, interpretability plays a key role in promoting trust and facilitating the adoption of deep learning models by the clinical communities. In the medical image analysis domain, gradient-based class activation maps are the most widely used explanation methods and the field lacks a more in depth investigation into inherently interpretable models that focus on integrating knowledge that ensures the model is learning the correct rules. A new approach, B-cos networks, for increasing the interpretability of deep neural networks by inducing weight-input alignment during training showed promising results on natural image classification. In this work, we study the suitability of these B-cos networks to the medical domain by testing them on different use cases (skin lesions, diabetic retinopathy, cervical cytology, and chest X-rays) and conducting a thorough evaluation of several explanation quality assessment metrics. We find that, just like in natural image classification, B-cos explanations yield more localised maps, but it is not clear that they are better than other methods' explanations when considering more explanation properties.

2024

Space Imaging Point Source Detection and Characterization

Autores
Ribeiro, FSF; Garcia, PJV; Silva, M; Cardoso, JS;

Publicação
IEEE ACCESS

Abstract
Point source detection algorithms play a pivotal role across diverse applications, influencing fields such as astronomy, biomedical imaging, environmental monitoring, and beyond. This article reviews the algorithms used for space imaging applications from ground and space telescopes. The main difficulties in detection arise from the incomplete knowledge of the impulse function of the imaging system, which depends on the aperture, atmospheric turbulence (for ground-based telescopes), and other factors, some of which are time-dependent. Incomplete knowledge of the impulse function decreases the effectiveness of the algorithms. In recent years, deep learning techniques have been employed to mitigate this problem and have the potential to outperform more traditional approaches. The success of deep learning techniques in object detection has been observed in many fields, and recent developments can further improve the accuracy. However, deep learning methods are still in the early stages of adoption and are used less frequently than traditional approaches. In this review, we discuss the main challenges of point source detection, as well as the latest developments, covering both traditional and current deep learning methods. In addition, we present a comparison between the two approaches to better demonstrate the advantages of each methodology.

2024

Phasing segmented telescopes via deep learning methods: application to a deployable CubeSat

Autores
Dumont, M; Correia, CM; Sauvage, JF; Schwartz, N; Gray, M; Cardoso, J;

Publicação
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION

Abstract
Capturing high-resolution imagery of the Earth's surface often calls for a telescope of considerable size, even from low Earth orbits (LEOs). A large aperture often requires large and expensive platforms. For instance, achieving a resolution of 1 m at visible wavelengths from LEO typically requires an aperture diameter of at least 30 cm. Additionally, ensuring high revisit times often prompts the use of multiple satellites. In light of these challenges, a small, segmented, deployable CubeSat telescope was recently proposed creating the additional need of phasing the telescope's mirrors. Phasing methods on compact platforms are constrained by the limited volume and power available, excluding solutions that rely on dedicated hardware or demand substantial computational resources. Neural networks (NNs) are known for their computationally efficient inference and reduced onboard requirements. Therefore, we developed a NN-based method to measure co-phasing errors inherent to a deployable telescope. The proposed technique demonstrates its ability to detect phasing errors at the targeted performance level [typically a wavefront error (WFE) below 15 nm RMS for a visible imager operating at the diffraction limit] using a point source. The robustness of the NN method is verified in presence of high-order aberrations or noise and the results are compared against existing state-of-the-art techniques. The developed NN model ensures its feasibility and provides arealistic pathway towards achieving diffraction-limited images. (c) 2024 Optica Publishing Group

  • 36
  • 394