Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CTM

2025

PEL: Population-Enhanced Learning Classification for ECG Signal Analysis

Autores
Pourvahab, M; Mousavirad, SJ; Lashgari, F; Monteiro, A; Shafafi, K; Felizardo, V; Pais, S;

Publicação
Studies in Computational Intelligence

Abstract
In the study, a new method for analyzing Electrocardiogram (ECG) signals is suggested, which is vital for detecting and treating heart diseases. The technique focuses on improving ECG signal classification, particularly in identifying different heart conditions like arrhythmias and myocardial infarctions. An enhanced version of the differential evolution (DE) algorithm integrated with neural networks is leveraged to classify these signals effectively. The process starts with preprocessing and extracting key features from ECG signals. These features are then processed by a multi-layer perceptron (MLP), a common neural network for ECG analysis. However, traditional MLP training methods have limitations, such as getting trapped in suboptimal solutions. To overcome this, an advanced DE algorithm is used, incorporating a partition-based strategy, opposition-based learning, and local search mechanisms. This improved DE algorithm optimizes the MLP by fine-tuning its weights and biases, using them as starting points for further refinement by the Gradient Descent with Momentum (GDM) local search algorithm. Extensive experiments demonstrate that this novel training approach yields better results than the traditional method. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2025

BreLoAI - A Scalable Web Application for Breast Cancer Locoregional Treatment Approaches

Autores
Romariz, MM; Gonçalves, TF; Bonci, E; Oliveira, H; Mavioso, C; Cardoso, MJ; Cardoso, J;

Publicação
Cureus Journal of Computer Science

Abstract

2025

A 3D Clinical Face Phenotype Space of Genetic Syndromes Using a Triplet-Based Singular Geometric Autoencoder

Autores
Mahdi, SS; Caldeira, E; Matthews, H; Vanneste, M; Nauwelaers, N; Yuan, M; Bouritsas, G; Baynam, GS; Hammond, P; Spritz, R; Klein, OD; Bronstein, M; Hallgrimsson, B; Peeters, H; Claes, P;

Publicação
IEEE ACCESS

Abstract
Clinical diagnosis of syndromes benefits strongly from objective facial phenotyping. This study introduces a novel approach to enhance clinical diagnosis through the development and exploration of a low-dimensional metric space referred to as the clinical face phenotypic space (CFPS). As a facial matching tool for clinical genetics, such CFPS can enhance clinical diagnosis. It helps to interpret facial dysmorphisms of a subject by placing them within the space of known dysmorphisms. In this paper, a triplet loss-based autoencoder developed by geometric deep learning (GDL) is trained using multi-task learning, which combines supervised and unsupervised learning approaches. Experiments are designed to illustrate the following properties of CFPSs that can aid clinicians in narrowing down their search space: a CFPS can 1) classify syndromes accurately, 2) generalize to novel syndromes, and 3) preserve the relatedness of genetic diseases, meaning that clusters of phenotypically similar disorders reflect functional relationships between genes. The proposed model consists of three main components: an encoder based on GDL optimizing distances between groups of individuals in the CFPS, a decoder enhancing classification by reconstructing faces, and a singular value decomposition layer maintaining orthogonality and optimal variance distribution across dimensions. This allows for the selection of an optimal number of CFPS dimensions as well as improving the classification capacity of the CFPS, which outperforms the linear metric learning baseline in both syndrome classification and generalization to novel syndromes. We further proved the usefulness of each component of the proposed framework, highlighting their individual impact. From a clinical perspective, the unique combination of these properties in a single CFPS results in a powerful tool that can be incorporated into current clinical practices to assess facial dysmorphism.

2025

Optical technologies in monitoring mobility and delivery of drugs and metabolic agents

Autores
Tuchin, VV; Dai, TH; Oliveira, LM;

Publicação
ADVANCED DRUG DELIVERY REVIEWS

Abstract
[No abstract available]

2025

Evaluation of cortical lateralization for identifying Parkinson’s disease patients using electroencephalographic signals and machine learning

Autores
Massaranduba, ABR; Coelho, BFO; Santos Souza, CAd; Viana, GG; Brys, I; Ramos, RP;

Publicação
Current Psychology

Abstract

2025

Fusion Strategies for Breast Cancer Characterization Using Traditional and Deep Learning Models

Autores
Pedro Vitor Lima; Jaime S. Cardoso; Hélder P. Oliveira;

Publicação
2025 IEEE 25th International Conference on Bioinformatics and Bioengineering (BIBE)

Abstract

  • 26
  • 394