2025
Autores
Silva, P; Dinis, R; Coelho, A; Ricardo, M;
Publicação
Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST
Abstract
The rapid growth of data traffic and evolving service demands are driving a shift from traditional network architectures to advanced solutions. While 5G networks provide reduced latency and higher availability, they still face limitations due to reliance on integrated hardware, leading to configuration and interoperability challenges. The emerging Open Radio Access Network (O-RAN) paradigm addresses these issues by enabling remote configuration and management of virtualized components through open interfaces, promoting cost-effective, multi-vendor interoperability. Network slicing, a key 5G enabler, allows for tailored network configurations to meet heterogeneous performance requirements. The main contribution of this paper is a private Standalone 5G network based on O-RAN, featuring a dynamic Data Radio Bearer Management xApp (xDRBM) for real-time metric collection and traffic prioritization. xDRBM optimizes resource usage and ensures performance guarantees for specific applications. Validation was conducted in an emulated environment representative of real-world scenarios. © ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2025.
2025
Autores
Barbosa, Z; Oliveira, S;
Publicação
IEEE Access
Abstract
This paper explores advancements in Video Anomaly Detection (VAD), combining theoretical insights with practical solutions to address model limitations. Through comprehensive experimental analysis, the study examines the role of feature representations, sampling strategies, and curriculum learning in enhancing VAD performance. Key findings include the impact of class imbalance on the Cross-Modal Awareness-Local Arousal (CMALA) architecture and the effectiveness of techniques like pseudo-curriculum learning in mitigating noisy classes, such as “Car Accident.” Novel strategies like the Sample-Batch Selection (SBS) dynamic segment selection and pre-trained image-text models, including Contrastive Language-Image Pre-training (CLIP) and ViTamin encoder, significantly improve anomaly detection. The research underscores the potential of multimodal VAD, highlighting the integration of audio and visual modalities and the development of multimodal fusion techniques. To support this evolution, the study proposes a Unified WorkStation 4 VAD (UWS4VAD) to streamline research workflows and introduces a new VAD benchmark incorporating multimodal data and textual information. The work envisions enhanced anomaly interpretation and performance by leveraging joint representation learning and Large Language Models (LLMs). The findings set the stage for future advancements, advocating for large-scale pre-training on audio-visual datasets and shifting toward a more integrated, multimodal approach to VADs. © 2013 IEEE.
2025
Autores
Barbosa, RZ; Oliveira, HS;
Publicação
IEEE ACCESS
Abstract
This paper explores advancements in Video Anomaly Detection (VAD), combining theoretical insights with practical solutions to address model limitations. Through comprehensive experimental analysis, the study examines the role of feature representations, sampling strategies, and curriculum learning in enhancing VAD performance. Key findings include the impact of class imbalance on the Cross-Modal Awareness-Local Arousal (CMALA) architecture and the effectiveness of techniques like pseudo-curriculum learning in mitigating noisy classes, such as Car Accident. Novel strategies like the Sample-Batch Selection (SBS) dynamic segment selection and pre-trained image-text models, including Contrastive Language-Image Pre-training (CLIP) and ViTamin encoder, significantly improve anomaly detection. The research underscores the potential of multimodal VAD, highlighting the integration of audio and visual modalities and the development of multimodal fusion techniques. To support this evolution, the study proposes a Unified WorkStation 4 VAD (UWS4VAD) to streamline research workflows and introduces a new VAD benchmark incorporating multimodal data and textual information. The work envisions enhanced anomaly interpretation and performance by leveraging joint representation learning and Large Language Models (LLMs). The findings set the stage for future advancements, advocating for large-scale pre-training on audio-visual datasets and shifting toward a more integrated, multimodal approach to VADs. Source code of the project available at https://github.com/zuble/uws4vad
2025
Autores
Oliveira, S;
Publicação
Journal of Reliable Intelligent Environments
Abstract
Predicting and controlling crowd dynamics in emergencies is one of the main objectives of simulated emergency exercises. However, during emergency exercises, there is often a lack of sense of danger by the actors involved and concerns about exposing real people to potentially dangerous environments. These problems impose limitations in running an emergency drill, harming the collection of valuable information for posterior analysis and decision-making. This work aims to mitigate these problems by using Agent Based Modelling (ABM) simulator to deepen the comprehension of human actions when exposed to a sudden variation in extensive crowded environmental conditions and how evacuation strategies affect evacuation performance. To assess the impact of the evacuation strategy employed, we propose a modified informed leader-flowing approach and compare it with common evacuation strategies in a simulated environment, replicating stadium benches with narrow corridors leading to different exit points. The objective is to determine the impact of each set of configurations and evacuation strategies and compare them against other established ones. Our experiments determined that agents following the crowd generally lead to a higher number of victims due to the rise of herding phenomena near the exits, which was significantly reduced when agents were guided towards the exit via knowing the exit beforehand or following leader agent with real-time information regarding exit location and exit current state, proving that relevant and controlled information in combination with Follow Leader strategies can be crucial in an emergency evacuation scenario with limited evacuation exit capabi and distribution. © The Author(s) 2024.
2025
Autores
Liu, XY; Wang, WL; Liu, M; Chen, MY; Pereira, T; Doda, DY; Ke, YF; Wang, SY; Wen, D; Tong, XG; Li, WG; Yang, Y; Han, XD; Sun, YL; Song, X; Hao, CY; Zhang, ZH; Liu, XY; Li, CY; Peng, R; Song, XX; Yasi, A; Pang, MJ; Zhang, K; He, RN; Wu, L; Chen, SG; Chen, WJ; Chao, YG; Hu, CG; Zhang, H; Zhou, M; Wang, K; Liu, PF; Chen, C; Geng, XY; Qin, Y; Gao, DR; Song, EM; Cheng, LL; Chen, X; Ming, D;
Publicação
MILITARY MEDICAL RESEARCH
Abstract
Brain-computer interfaces (BCIs) represent an emerging technology that facilitates direct communication between the brain and external devices. In recent years, numerous review articles have explored various aspects of BCIs, including their fundamental principles, technical advancements, and applications in specific domains. However, these reviews often focus on signal processing, hardware development, or limited applications such as motor rehabilitation or communication. This paper aims to offer a comprehensive review of recent electroencephalogram (EEG)-based BCI applications in the medical field across 8 critical areas, encompassing rehabilitation, daily communication, epilepsy, cerebral resuscitation, sleep, neurodegenerative diseases, anesthesiology, and emotion recognition. Moreover, the current challenges and future trends of BCIs were also discussed, including personal privacy and ethical concerns, network security vulnerabilities, safety issues, and biocompatibility.
2025
Autores
Sun, YL; Cheng, LL; Si, XP; He, RN; Pereira, T; Pang, MJ; Zhang, K; Song, X; Ming, D; Liu, XY;
Publicação
EXPERT SYSTEMS WITH APPLICATIONS
Abstract
Subject-independent seizure detection algorithms are typically grounded in scalp electroencephalogram (EEG) databases, due to standardized channels and locations of EEG electrodes. Intracranial EEG (iEEG) has the characteristics of low noise and high temporal resolution compared with scalp EEG. However, it is still a big challenge for seizure detection using iEEG, because of the inconsistent number and locations of implanted electrodes in different patients, which results in a lack of unified algorithms. This study introduces an innovative approach for subject-independent seizure detection using iEEG, combining channel-wise mixup, transformer networks, and multi-task learning. Channel-wise mixup enhances data utilization by effectively leveraging information from different subjects, while multi-task learning improves the generalization of the model by concurrently optimizing both the seizure detection and the subject recognition tasks. 2983 files from two well-known epilepsy databases, i.e. SWEC-ETHZ and HUP were used in our study and the result showed that our approach surpasses currently existing methods. In terms of accuracy and generalization of seizure detection, our method achieved an area under the receiver operating characteristic curve (AUC) of 0.97 and 0.95 on the two databases respectively, which are significantly higher than the result of the currently existing methods. This study proposed anew method with great potential for surgery planning of epilepsy patients.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.