2025
Autores
Brancalião L.; Alvarez M.; Coelho J.; Conde M.; Costa P.; Gonçalves J.;
Publicação
Lecture Notes in Educational Technology
Abstract
Robotic competitions have been popularly applied in the educational context, proving to be an excellent method for fostering student engagement and interest in science, technology, engineering, and math (STEM). In this context, this paper presents the application of mobile robots in a classroom competition, in order to encourage students to enhance mobile robotics concepts learning in a dynamic and collaborative environment. The mobile robot prototyping is presented, and the methodology, including the Hardware-in-the-loop approach applied in the classrooms, is also described, together with the competition rules and challenges proposed for the students. The results indicated an improvement in students’ motivation, teamwork, communication, and the development of technical skills, computational thinking, and problem-solving.
2025
Autores
Alvarez M.; Brancalião L.; Carneiro J.; Costa P.; Coelho J.; Gonçalves J.;
Publicação
Lecture Notes in Electrical Engineering
Abstract
One of the industry’s most common applications of lasers is engraving, which is generally performed on flat surfaces. However, there are many situations where the object to be engraved has an unevenly curved geometry. In those cases, the light power density will be different along the surface for a fixed head, leading to a poor engraving result. This work deals with this problem by designing a robotic application capable of detecting variations on the object surface and automatically creating a trajectory to engrave on it correctly. This was made possible through a robotic manipulator, a time-of-flight distance sensor, and a data processing algorithm over the measured data. Obtained results were acquired using a custom-made test rig and validated by delivering consistent engraving results on irregular surface shapes.
2025
Autores
Couto, MB; Petry, MR; Mendes, A; Silva, MF;
Publicação
2025 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC
Abstract
The growing reliance on e-commerce and the demand for efficient intralogistics operations have increased the need for automation, while labour shortages continue to pose significant challenges. When combined with the inherent risks of forklift operation, this circumstance prompted businesses to look for robotic solutions for intralogistics tasks. However, robots are still limited when they come across situations that are outside of their programming scope and often need assistance from humans. To achieve the long-term goal of enhancing intralogistics operation, we propose the development of a virtual reality-based teleoperation system that allows remote operation of robot forklifts with minimal latency. Considering the specificities of the teleoperation process and network dynamics, we conduct detailed modelling to analyse latency factors, optimise system performance, and ensure a seamless user experience. Experimental results on a mobile robot have shown that the proposed teleoperation system achieves an average glass-to-glass latency of 368 ms, with capturing latency contributing to approximately 60% of the total delay. The results also indicate that network oscillations significantly impact image quality and user experience, emphasising the importance of a stable network infrastructure.
2025
Autores
Grazi, L; Alonso, AF; Gasiorek, A; Llopis, AMP; Grajeda, A; Kanakis, A; Vidal, AR; Parri, A; Vidal, F; Ergas, I; Zeljkovic, I; Durá, JP; Mein, JP; Katsampiris-Salgado, K; Rocha, LF; Rodriguez, LN; Petry, MR; Neufeld, M; Dimitropoulos, N; Köster, N; Mimica, R; Fernandes, SV; Crea, S; Makris, S; Giartzas, S; Settler, V; Masood, J;
Publicação
ELECTRONICS
Abstract
Small to medium-sized shipyards play a crucial role in the European naval industry. However, the globalization of technology has increased competition, posing significant challenges to shipyards, particularly in domestic markets for short sea, work, and inland vessels. Many shipyard operations still rely on manual, labor-intensive tasks performed by highly skilled operators. In response, the adoption of new tools is essential to enhance efficiency and competitiveness. This paper presents a methodology for developing a human-centric portfolio of advanced technologies tailored for shipyard environments, covering processes such as shipbuilding, retrofitting, outfitting, and maintenance. The proposed technological solutions, which have achieved high technology readiness levels, include 3D modeling and digitalization, robotics, augmented and virtual reality, and occupational exoskeletons. Key findings from real-scale demonstrations are discussed, along with major development and implementation challenges. Finally, best practices and recommendations are provided to support both technology developers seeking fully tested tools and end users aiming for seamless adoption.
2025
Autores
Nascimento, R; Gonzalez, DG; Pires, EJS; Filipe, V; Silva, MF; Rocha, LF;
Publicação
IEEE ACCESS
Abstract
The increasing demand for automated quality inspection in modern industry, particularly for transparent and reflective parts, has driven significant interest in vision-based technologies. These components pose unique challenges due to their optical properties, which often hinder conventional inspection techniques. This systematic review analyzes 24 peer-reviewed studies published between 2015 and 2025, aiming to assess the current state of the art in computer vision-based inspection systems tailored to such materials. The review synthesizes recent advancements in imaging setups, illumination strategies, and deep learning-based defect detection methods. It also identifies key limitations in current approaches, particularly regarding robustness under variable industrial conditions and the lack of standardized benchmarks. By highlighting technological trends and research gaps, this work offers valuable insights and directions for future research-emphasizing the need for adaptive, scalable, and industry-ready solutions to enhance the reliability and effectiveness of inspection systems for transparent and reflective parts.
2025
Autores
Dias, PA; de Souza, JPC; Pires, EJS; Filipe, V; Figueiredo, D; Rocha, LF; Silva, MF;
Publicação
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS
Abstract
In an era where robots are becoming an integral part of human quotidian activities, understanding how they function is crucial. Among the inherent building complexities, from electronics to mechanics, path planning emerges as a universal aspect of robotics. The primary contribution of this work is to provide an overview of the current state of robot path planning topics and a comparison between those same algorithms and its inherent characteristics. The path planning concept relies on the process by which an algorithm determines a collision-free path between a start and an end point, optimizing parameters such as energy consumption and distance. The quest for the most effective path planning method has been a long-standing discussion, as the choice of method is highly dependent on the specific application. This review consolidates and elucidates the categories of path planning methods, specifically classical or analytical methods, and computer intelligence methods. In addition, the operational principles of these categories will be explored, discussing their respective advantages and disadvantages, and reinforcing these discussions with relevant studies in the field. This work will focus on the most prevalent and recognized methods within the robotics path planning problem, being mobile robotics or manipulator arms, including Cell Decomposition, A*, Probabilistic Roadmaps, Rapidly-exploring Random Trees, Genetic Algorithms, Particle Swarm Optimization, Ant Colony Optimization, Artificial Potential Fields, Fuzzy, and Neural Networks. Following the detailed explanation of these methods, a comparative analysis of their advantages and drawbacks is organized in a comprehensive table. This comparison will be based on various quality metrics, such as the type of trajectory provided (global or local), the scenario implementation type (real or simulated scenarios), testing environments (static or dynamic), hybrid implementation possibilities, real-time implementation, completeness of the method, consideration of the robot's kinodynamic constraints, use of smoothing techniques, and whether the implementation is online or offline.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.