2024
Autores
Sousa, JJ; Lin, JH; Wang, Q; Liu, G; Fan, JH; Bai, SB; Zhao, HL; Pan, HY; Wei, WJ; Rittlinger, V; Mayrhofer, P; Sonnenschein, R; Steger, S; Reis, LP;
Publicação
GEO-SPATIAL INFORMATION SCIENCE
Abstract
Remote sensing, particularly satellite-based, can play a valuable role in monitoring areas prone to geohazards. The high spatial and temporal coverage provided by satellite data can be used to reconstruct past events and continuously monitor sensitive areas for potential hazards. This paper presents a range of techniques and methods that were applied for in-depth analysis and utilization of Earth observation data, with a particular emphasis on: (1) detecting mining subsidence, where a novel approach is proposed by combining an improved U-Net model and Interferometry Synthetic Aperture Radar (InSAR) technology. The results showed that the Efficient Channel Attention (ECA) U-Net model performed better than the U-Net (baseline) model in terms of Mean Intersection over Union (MIoU) and Intersection over Union (IoU) indicators; (2) monitoring water conservancy and hydropower engineering. The Xiaolangdi multipurpose dam complex was monitored using Small BAsline Subsets (SBAS) InSAR method on Sentinel-1 time series data and four small regions with high deformation rates were identified on the slope of the reservoir bank on the north side. The dam body also showed obvious deformation with a velocity exceeding 60 mm/a; (3) the evaluation of the potential of InSAR results to integrate monitoring and warning systems for valuable heritage and architectural preservation. The overall outcome of these methods showed that the use of Artificial Intelligence (AI) techniques in combination with InSAR data leads to more efficient analysis and interpretation, resulting in improved accuracy and prompt identification of potential hazards; and (4) finally, this study also presents a method for detecting landslides in mountainous regions, using optical imagery. The new temporal landslide detection method is evaluated over a 7-year analysis period and unlike conventional bi-temporal change detection methods, this approach does not depend on any prior-knowledge and can potentially detect landslides over extended periods of time such as decades.
2024
Autores
Santos, R; Piqueiro, H; Dias, R; Rocha, CD;
Publicação
COMPUTERS & INDUSTRIAL ENGINEERING
Abstract
In the dynamic realm of nowadays manufacturing, integrating digital technologies has become paramount for enhancing operational efficiency and decision-making processes. This article presents a novel system architecture that integrates a Simulation-based Digital Twin (DT) with emerging trends in manufacturing to enhance decision-making, accompanied by a detailed technical approach encompassing protocols and technologies for each component. The DT leverages advanced simulation techniques to model, monitor, and optimize production processes in real time, facilitating both strategic and operational decision-making. Complementing the DT, trending technologies such as artificial intelligence, additive manufacturing, collaborative robots, autonomous vehicles, and connectivity advancements are strategically integrated to enhance operational efficiency and facilitate the adoption of the Manufacturing as a Service (MaaS) paradigm. A case study within a MaaS supplier context, deployed in an industrial laboratory with advanced robotic systems, demonstrates the practical application of optimizing dynamic job-shop configurations using Simulation-based DT, showcasing strategies to improve operational efficiency and resource utilization. The results of the industrial experiment were highly encouraging, underscoring the potential for extension to more intricate industrial systems, with particular emphasis on incorporating sustainability and remanufacturing principles.
2024
Autores
Santos, R; Rocha, C; Dias, R; Quintas, J;
Publicação
SIMULATION FOR A SUSTAINABLE FUTURE, PT 1, EUROSIM 2023
Abstract
A new generation of manufacturing systems is emerging through the adoption of new policies to overcome future crises highlighted by constant social, environmental, and economic concerns. The rise of so-called smart manufacturing is noticeable. However, new risks to humankind are being introduced, and, more than ever, science and technology are required to guarantee the future sustainability and resilience of our manufacturing systems. This research presents a Digital Twin approach resorting to simulation models with embedded intelligence to transform efficient manufacturing systems and react to complex and unpredictable circumstances. The methodology covers production scheduling incorporating flexible robots, internal logistics supervision contemplating planning and control of mobile robots, and capacity management. The method demonstrates the potential of integrating Additive Manufacturing technologies to quickly react to production needs. The developed strategy was enforced and assessed in an industrial experiment, exhibiting its robustness and promising application. The attained results were very encouraging, highlighting its potential extension to more complex industrial systems.
2024
Autores
Barroso, TG; Costa, JM; Gregório, AH; Martins, RC;
Publicação
Abstract
2024
Autores
Monteiro, AT; Arenas-Castro, S; Punalekar, SM; Cunha, M; Mendes, I; Giamberini, M; da Costa, EM; Fava, F; Lucas, R;
Publicação
ECOLOGICAL INDICATORS
Abstract
The satellite monitoring of vegetation moisture content (VMC) and soil moisture content (SMC) in Southern European Atlantic mountains remains poorly understood but is a fundamental tool to better manage landscape moisture dynamics under climate change. In the Atlantic humid mountains of Portugal, we investigated an empirical model incorporating satellite (Sentinel-1 radar, S1; Sentinel-2 optical, S2) and ancillary predictors (topography and vegetation cover type) to monitor VMC (%) and SMC (%). Predictors derived from the S1 (VV, HH and VV/HH) and S2 (NDVI and NDMI) are compared to field measurements of VMC (n = 48) and SMC (n = 48) obtained during the early, mid and end of summer. Linear regression modelling was applied to uncover the feasibility of a landscape model for VMC and SMC, the role of vegetation type models (i.e. native forest, grasslands and shrubland) to enhance predictive capacity and the seasonal variation in the relationships between satellite predictors and VMC and SMC. Results revealed a significant but weak relationship between VMC and predictors at landscape level (R2 = 0.30, RMSEcv = 69.9 %) with S2_NDMI and vegetation cover type being the only significant predictors. The relationship improves in vegetation type models for grasslands (R2 = 0.35, RMSEcv = 95.0 % with S2_NDVI) and shrublands conditions (R2 = 0.52, RMSEcv = 45.3 %). A model incorporating S2_NDVI and S1_VV explained 52 % of the variation in VMC in shrublands. The relationship between SMC and satellite predictors at the landscape level was also weak, with only the S2_NDMI and vegetation cover type exhibiting a significant relationship (R2 = 0.28, RMSEcv = 18.9 %). Vegetation type models found significant associations with SMC only in shrublands (R2 = 0.31, RMSEcv = 9.03 %) based on the S2_NDMI and S1_VV/VH ratio. The seasonal analysis revealed however that predictors associated to VMC and SMC may vary over the summer. The relationships with VMC were stronger in the early summer (R2 = 0.31, RMSEcv = 90.1 %; based on S2_NDMI) and mid (R2 = 0.37, RMSEcv = 70.8 %; based on S2_NDVI), butnon-significant in the end of summer. Similar pattern was found for SMC, where the link with predictors decreases from the early summer (R2 = 0.33, RMSEcv = 16.0 %; based on S1_VH) and mid summer (R2 = 0.30, RMSEcv = 17.8 %; based on S2_NDMI) to the end of summer (non-significant). Overall, the hypothesis of a universal landscape model for VMC and SMC was not fully supported. Vegetation type models showed promise, particularly for VMC in shrubland conditions. Sentinel optical and radar data were the most significant predictors in all models, despite the inclusion of ancillary predictors. S2_NDVI, S2_NDMI, S1_VV and S1_VV/VH ratio were the most relevant predictors for VMC and, to a lesser extent, SMC. Future research should quantify misregistration effects using plot vs. moving window values for the satellite predictors, consider meteorological control factors, and enhance sampling to overcome a main limitation of our study, small sample size.
2024
Autores
Sandro Augusto Costa Magalhães;
Publicação
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.