Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRIIS

2025

Designing and Developing a Fixed-Wing Tail-sitter Tethered VTOL UAV with Custom Autopilot: A MIMO H8 Robust Control Approach

Autores
Safaee, A; Moreira, AP; Aguiar, AP;

Publicação
2025 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC

Abstract
This article presents the development of a tethered fixed-wing tail-sitter VTOL (Vertical Take-Off and Landing) Unmanned Aerial Vehicle system. The design focuses on improving energy efficiency by utilizing the wings to harness wind power, similar to a kite, while maintaining VTOL functionality. A distinguishing feature is the purpose-built autopilot system, with custom hardware and software components specifically engineered for this application. The study presents the system identification process for obtaining five MIMO (Multiple-Input Multiple-Output) transfer functions that characterize the dynamics between roll-yaw commands and responses, including the tether angle feedback. To address the inherent coupling effects and uncertainties in the system, robust mixed sensitivity (H-infinity) MIMO controllers are developed. The controllers were validated through both simulations and experimental flights, demonstrating effective performance in handling cross-coupling effects and maintaining stability under various operating conditions. According to flight test findings, the system can precisely manage the tether angle while adjusting for ground effect disturbances. This allows for accurate tethered navigation, a stable attitude, and the maintenance of an adequate yaw heading.

2025

A Nonlinear Model Predictive Control Strategy for Trajectory Tracking of Omnidirectional Robots

Autores
Ribeiro, J; Sobreira, H; Moreira, A;

Publicação
Lecture Notes in Electrical Engineering

Abstract
This paper presents a novel Nonlinear Model Predictive Controller (NMPC) architecture for trajectory tracking of omnidirectional robots. The key innovation lies in the method of handling constraints on maximum velocity and acceleration outside of the optimization process, significantly reducing computation time. The controller uses a simplified process model to predict the robot’s state evolution, enabling real-time cost function minimization through gradient descent methods. The cost function penalizes position and orientation errors as well as control effort variation. Experimental results compare the performance of the proposed controller with a generic Proportional-Derivative (PD) controller and a NMPC with integrated optimization constraints. The findings reveal that the proposed controller achieves higher precision than the PD controller and similar precision to the NMPC with integrated constraints, but with substantially lower computational effort. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2025

From Competition to Classroom: A Hands-on Approach to Robotics Learning

Autores
Lopes, MS; Ribeiro, JD; Moreira, AP; Rocha, CD; Martins, JG; Sarmento, JM; Carvalho, JP; Costa, PG; Sousa, RB;

Publicação
2025 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC

Abstract
Robotics education plays a crucial role in developing STEM skills. However, university-level courses often emphasize theoretical learning, which can lead to decreased student engagement and motivation. In this paper, we tackle the challenge of providing hands-on robotics experience in higher education by adapting a mobile robot originally designed for competitions to be used in laboratory classes. Our approach integrates real-world robot operation into coursework, bridging the gap between simulation and physical implementation while maintaining accessibility. The robot's software is developed using ROS, and its effectiveness is assessed through student surveys. The results indicate that the platform increases student engagement and interest in robotics topics. Furthermore, feedback from teachers is also collected and confirmed that the platform boosts students' confidence and understanding of robotics.

2025

Decision-Making Framework For AMR Fleet Size In Manufacturing Environments

Autores
Rema C.; Santos R.; Piqueiro H.; Matos D.M.; Oliveirat P.M.; Costa P.; Silva M.F.;

Publicação
2025 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC

Abstract
Industry 4.0 is transforming manufacturing environments, with robotics being a key technology that enhances various capabilities. The flexibility of Autonomous Mobile Robots has led to the rise of multi-robot systems in industrial settings. Considering the high cost of these robots, it is essential to determine the best fit of number and type before making any major investments. Simulation and modeling are valuable decision-support tools, allowing the simulation of different setups to address robot fleet sizing issues. This paper introduces a decision-support framework that combines a fleet manager software stack with the FlexSim simulator, helping decision-makers determine the most suitable mobile robots fleet size tailored to their needs. Unlike previous approaches, the developed solution integrates the same real robot coordination software in both simulation and actual deployment, ensuring that tested scenarios accurately reflect real-world conditions. A case study was conducted to evaluate the framework, involving multiple tasks of loading and unloading materials within a warehouse. Five different scenarios with varying fleet sizes were simulated, and their performances assessed. The analysis concluded that, for the case study under consideration, a fleet of three robots was the most suitable, considering relevant key performance indicators. The results confirmed that the developed solution is an effective alternative for addressing the problem and represents a novel technology with no prior state-of-the-art equivalents.

2025

Task Scheduling with Mobile Robots-A Systematic Literature Review

Autores
Rema, C; Costa, P; Silva, M; Pires, EJS;

Publicação
ROBOTICS

Abstract
The advent of Industry 4.0, driven by automation and real-time data analysis, offers significant opportunities to revolutionize manufacturing, with mobile robots playing a central role in boosting productivity. In smart job shops, scheduling tasks involves not only assigning work to machines but also managing robot allocation and travel times, thus extending traditional problems like the Job Shop Scheduling Problem (JSSP) and Traveling Salesman Problem (TSP). Common solution methods include heuristics, metaheuristics, and hybrid methods. However, due to the complexity of these problems, existing models often struggle to provide efficient optimal solutions. Machine learning, particularly reinforcement learning (RL), presents a promising approach by learning from environmental interactions, offering effective solutions for task scheduling. This systematic literature review analyzes 71 papers published between 2014 and 2024, critically evaluating the current state of the art of task scheduling with mobile robots. The review identifies the increasing use of machine learning techniques and hybrid approaches to address more complex scenarios, thanks to their adaptability. Despite these advancements, challenges remain, including the integration of path planning and obstacle avoidance in the task scheduling problem, which is crucial for making these solutions stable and reliable for real-world applications and scaling for larger fleets of robots.

2025

Enhancing Mobile Robot Navigation: A Graph Decomposition Submodule for TEA*

Autores
Cardoso, F; Matos, DM; Brilhante, M; Costa, P; Sobreira, E; Silva, C;

Publicação
2025 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC

Abstract
Rising industrial complexity demands efficient mobile robots to drive automation and productivity. Effective navigation relies on perception, localization, mapping, path planning, and motion control, with path planning being key. The Time Enhanced A* (TEA*) algorithm extends A* by adding time as a dimension to resolve temporal conflicts in multi-robot coordination. However, inconsistencies in edge lengths within the graph can hinder optimal path calculation. To address this, a Graph Decomposition submodule was developed to standardize edge lengths and temporal costs. Integrated into a ROS-based fleet coordination system, this approach significantly reduces execution time and improves coordination capacity.

  • 5
  • 385