Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRIIS

2025

Assessing the Impacts of Selective Logging on the Forest Understory in the Amazon Using Airborne LiDAR

Autores
Ferreira, L; Bias, ED; Barros, QS; Pádua, L; Matricardi, EAT; Sousa, JJ;

Publicação
FORESTS

Abstract
Reduced-impact logging (RIL) has been recognized as a promising strategy for biodiversity conservation and carbon sequestration within sustainable forest management (SFM) areas. However, monitoring the forest understory-a critical area for assessing logging impacts-remains challenging due to limitations in conventional methods such as field inventories and global navigation satellite system (GNSS) surveys, which are time-consuming, costly, and often lack accuracy in complex environments. Additionally, aerial and satellite imagery frequently underestimate the full extent of disturbances as the forest canopy obscures understory impacts. This study examines the effectiveness of the relative density model (RDM), derived from airborne LiDAR data, for mapping and monitoring understory disturbances. A field-based validation of LiDAR-derived RDM was conducted across 25 sites, totaling 5504.5 hectares within the Jamari National Forest, Rond & ocirc;nia, Brazil. The results indicate that the RDM accurately delineates disturbances caused by logging infrastructure, with over 90% agreement with GNSS field data. However, the model showed the greatest discrepancy for skid trails, which, despite their lower accuracy in modeling, accounted for the largest proportion of the total impacted area among infrastructure. The findings include the mapping of 35.1 km of primary roads, 117.4 km of secondary roads, 595.6 km of skid trails, and 323 log landings, with skid trails comprising the largest proportion of area occupied by logging infrastructure. It is recommended that airborne LiDAR assessments be conducted up to two years post-logging, as impacts become less detectable over time. This study highlights LiDAR data as a reliable alternative to traditional monitoring approaches, with the ability to detect understory impacts more comprehensively for monitoring selective logging in SFM areas of the Amazon, providing a valuable tool for both conservation and climate mitigation efforts.

2025

Application of Cloud Simulation Techniques for Robotic Software Validation

Autores
Vieira, D; Oliveira, M; Arrais, R; Melo, P;

Publicação
SENSORS

Abstract
Continuous Integration and Continuous Deployment are known methodologies for software development that increase the overall quality of the development process. Several robotic software repositories make use of CI/CD tools as an aid to development. However, very few CI pipelines take advantage of using cloud computing to run simulations. Here, a CI pipeline is proposed that takes advantage of such features, applied to the development of ATOM, a ROS-based application capable of carrying out the calibration of generalized robotic systems. The proposed pipeline uses GitHub Actions as a CI/CD engine, AWS RoboMaker as a service for running simulations on the cloud and Rigel as a tool to both containerize ATOM and execute the tests. In addition, a static analysis and unit testing component is implemented with the use of Codacy. The creation of the pipeline was successful, and it was concluded that it constitutes a valuable tool for the development of ATOM and a blueprint for the creation of similar pipelines for other robotic systems.

2025

Modeling Impacts of Climate Change and Adaptation Measures on Rice Growth in Hainan, China

Autores
Yang, RC; Guo, YH; Nie, JW; Zhou, W; Ma, RC; Yang, B; Shi, JH; Geng, J; Wu, WX; Liu, J; Kandegama, WMWW; Cunha, M;

Publicação
SUSTAINABILITY

Abstract
Rising temperatures, extreme precipitation events such as excessive or insufficient rainfall, increasing levels of carbon dioxide, and associated climatic factors will persistently impact crop growth and agricultural production. The warming temperatures have reduced the agricultural crop yields. Rice (Oryza sativa L.) is the major food crop, which is particularly susceptible to the effects of climate change. It is very important to accurately evaluate the impacts of climate change on rice growth and rice yield. In this study, the rice growth during 1981-2018 (baseline period) and 2041-2100 (future period) were separately simulated and compared within the CERES-Rice model (v4.6) using high-quality weather data, soil, and field experimental data at six agro-meteorological stations in Hainan Province. For the climate data of the future period, the SSP1-2.6, SSP3-7.0, and SSP5-8.5 scenarios were applied, with carbon dioxide (CO2) fertilization effects considered. The adaptation strategies such as adjusting planting dates and switching rice cultivars were also assessed. The simulation results indicated that the early rice yields in the 2050s, 2070s, and 2090s were projected to decrease by 6.2%, 11.8%, and 20.0% when the CO2 fertilization effect was not considered, compared with the results of the baseline period, respectively, while late rice yields would decline by 9.9%, 23.4%, and 36.3% correspondingly. When accounting for the CO2 fertilization effect, the yields of early rice and late rice in the 2090s increased 16.9% and 6.2%, respectively. Regarding adaptation measures, adjusting planting dates and switching rice cultivars could increase early rice yields by 22.7% and 43.3%, respectively, while increasing late rice yields by 20.2% and 34.2% correspondingly. This study holds substantial scientific importance for elucidating the mechanistic pathways through which climate change influences rice productivity in tropical agro-ecosystems, and provides a critical foundation for formulating evidence-based adaptation strategies to mitigate climate-related risks in a timely manner. Cultivar substitution and temporal shifts in planting dates constituted two adaptation strategies for attenuating the adverse impacts of anthropogenic climate change on rice.

2025

Arbutus Berry Detection and Classification for Harvesting

Autores
Pereira, J; Baltazar, AR; Pinheiro, I; da Silva, DQ; Frazao, ML; Neves Dos Santos, FN;

Publicação
IEEE International Conference on Emerging Technologies and Factory Automation, ETFA

Abstract
Automated fruit harvesting systems rely heavily on accurate visual perception, particularly for crops such as the Arbutus tree (Arbutus unedo), which holds both ecological and economic significance. However, this species poses considerable challenges for computer vision due to its dense foliage and the morphological variability of its berries across different ripening stages. Despite its importance, the Arbutus tree remains under-explored in the context of precision agriculture and robotic harvesting. This study addresses that gap by evaluating a computer vision-based approach to detect and classify Arbutus berries into three ripeness categories: green, yellow-orange, and red. A significant contribution of this work is the release of two fully annotated open-access datasets, Arbutus Berry Detection Dataset and Arbutus Berry Ripeness Level Detection Dataset, developed through a structured manual labeling process. Additionally, we benchmarked four YOLO architectures - YOLOv8n, YOLOv9t, YOLOv10n, and YOLO11n - as well as the RT-DETR models, using these datasets. Among these, RT-DETR-L demonstrated the most consistent performance in terms of precision, recall, and generalization, outperforming the lighter YOLO models in both speed and accuracy. This highlights RT-DETR's strong potential for deployment in real-time automated harvesting systems, where robust detection and efficient inference are critical. © 2025 IEEE.

2025

Towards an Artificial Intelligence System for Automated Accessory Removal in Textile Recycling: Detecting Textile Fasteners

Autores
Lopes, D; F Silva, MF; Rocha, F; Filipe, V;

Publicação
IEEE International Conference on Emerging Technologies and Factory Automation, ETFA

Abstract
The textile industry faces economic and environmental challenges due to low recycling rates and contamination from fasteners like buttons, rivets, and zippers. This paper proposes an Red, Green, Blue (RGB) vision system using You Only Look Once version 11 (YOLOv11) with a sliding window technique for automated fastener detection. The system addresses small object detection, occlusion, and fabric variability, incorporating Grounding DINO for garment localization and U2-Net for segmentation. Experiments show the sliding window method outperforms full-image detection for buttons and rivets (precision 0.874, recall 0.923), while zipper detection is less effective due to dataset limitations. This work advances scalable AI-driven solutions for textile recycling, supporting circular economy goals. Future work will target hidden fasteners, dataset expansion and fastener removal. © 2025 IEEE.

2024

Integrating Internationalization and Online Collaborative Strategies in Digital Electronics Education: Exploring IaH, COIL, PBL, and RRL Approaches for Enhanced Learning

Autores
Cristian Zambelli; Michele Favalli; Piero Olivo; Ignacio Bravo; Alfredo Gardel; José Carlos Alves; Hélio Mendonça; Etienne Lemaire; Remi Busseuil; carlos cruz;

Publicação

Abstract

This document is intended to present a benchmark of multiple good practices in the context of internationalization studies, particularly focused on digital electronics and programmable devices, yet is not limited to them. This paper will start with a comprehensive paper desk analysis together with an in-depth research process that should lead to the selection of innovative tools applied to digital systems. International initiatives are oriented towards increasing the quality of higher education by motivating teachers of STEM disciplines to use a multidisciplinary approach and teach with the massive support of technologies like Classroom, MS-Teams, Blackboard, etc. The central goal is to suggest and recommend a model for integrating intermediate and advanced digital electronics subjects (e.g., FPGA, microcontrollers, etc.) and ICT in international teaching approaches such as Collaborative Online International Learning (COIL), Project-based Learning (PBL) and Real Remote Labs (RRL). This is the approach sought by the European Project DECEL.

  • 19
  • 385