2020
Autores
Machado, M; Ferreira, CA; Pedrosa, J; Negrao, E; Rebelo, J; Leitao, P; Carvalho, AS; Rodrigues, MC; Ramos, I; Cunha, A; Campilho, A;
Publicação
XV MEDITERRANEAN CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING AND COMPUTING - MEDICON 2019
Abstract
The lung cancer diagnosis is based on the search of lung nodules. Besides its characterization, it is also common to register the anatomical position of these findings. Even though computed-aided diagnosis systems tend to help in these tasks, there is still lacking a complete system that can qualitatively label the nodules in lung regions. In this way, this paper proposes an automatic lung reference model to facilitate the report of nodules between computed-aided diagnosis systems and the radiologist, and among radiologists. The model was applied to 115 computed tomography scans with manually and automatically segmented lobes, and the obtained sectors' variability was evaluated. As the sectors average variability within lobes is less or equal to 0.14, the model can be a good way to promote the report of lung nodules.
2020
Autores
Rocha, J; Cunha, A; Mendonca, AM;
Publicação
JOURNAL OF MEDICAL SYSTEMS
Abstract
Lung cancer is considered one of the deadliest diseases in the world. An early and accurate diagnosis aims to promote the detection and characterization of pulmonary nodules, which is of vital importance to increase the patients' survival rates. The mentioned characterization is done through a segmentation process, facing several challenges due to the diversity in nodular shape, size, and texture, as well as the presence of adjacent structures. This paper tackles pulmonary nodule segmentation in computed tomography scans proposing three distinct methodologies. First, a conventional approach which applies the Sliding Band Filter (SBF) to estimate the filter's support points, matching the border coordinates. The remaining approaches are Deep Learning based, using the U-Net and a novel network called SegU-Net to achieve the same goal. Their performance is compared, as this work aims to identify the most promising tool to improve nodule characterization. All methodologies used 2653 nodules from the LIDC database, achieving a Dice score of 0.663, 0.830, and 0.823 for the SBF, U-Net and SegU-Net respectively. This way, the U-Net based models yield more identical results to the ground truth reference annotated by specialists, thus being a more reliable approach for the proposed exercise. The novel network revealed similar scores to the U-Net, while at the same time reducing computational cost and improving memory efficiency. Consequently, such study may contribute to the possible implementation of this model in a decision support system, assisting the physicians in establishing a reliable diagnosis of lung pathologies based on this segmentation task.
2020
Autores
Rocha, J; Cunha, A; Mendonca, AM;
Publicação
XV MEDITERRANEAN CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING AND COMPUTING - MEDICON 2019
Abstract
This paper proposes a conventional approach for pulmonary nodule segmentation, that uses the Sliding Band Filter to estimate the center of the nodule, and consequently the filter's support points, matching the initial border coordinates. This preliminary segmentation is then refined to try to include mainly the nodular area, and no other regions (e.g. vessels and pleural wall). The algorithm was tested on 2653 nodules from the LIDC database and achieved a Dice score of 0.663, yielding similar results to the ground truth reference, and thus being a promising tool to promote early lung cancer screening and improve nodule characterization.
2020
Autores
Aresta, G; Ferreira, C; Pedrosa, J; Araujo, T; Rebelo, J; Negrao, E; Morgado, M; Alves, F; Cunha, A; Ramos, I; Campilho, A;
Publicação
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS
Abstract
Early diagnosis of lung cancer via computed tomography can significantly reduce the morbidity and mortality rates associated with the pathology. However, searching lung nodules is a high complexity task, which affects the success of screening programs. Whilst computer-aided detection systems can be used as second observers, they may bias radiologists and introduce significant time overheads. With this in mind, this study assesses the potential of using gaze information for integrating automatic detection systems in the clinical practice. For that purpose, 4 radiologists were asked to annotate 20 scans from a public dataset while being monitored by an eye tracker device, and an automatic lung nodule detection system was developed. Our results show that radiologists follow a similar search routine and tend to have lower fixation periods in regions where finding errors occur. The overall detection sensitivity of the specialists was 0.67 +/- 0.07, whereas the system achieved 0.69. Combining the annotations of one radiologist with the automatic system significantly improves the detection performance to similar levels of two annotators. Filtering automatic detection candidates only for low fixation regions still significantly improves the detection sensitivity without increasing the number of false-positives.
2020
Autores
Pinheiro, G; Pereira, T; Dias, C; Freitas, C; Hespanhol, V; Costa, JL; Cunha, A; Oliveira, HP;
Publicação
SCIENTIFIC REPORTS
Abstract
EGFR and KRAS are the most frequently mutated genes in lung cancer, being active research topics in targeted therapy. The biopsy is the traditional method to genetically characterise a tumour. However, it is a risky procedure, painful for the patient, and, occasionally, the tumour might be inaccessible. This work aims to study and debate the nature of the relationships between imaging phenotypes and lung cancer-related mutation status. Until now, the literature has failed to point to new research directions, mainly consisting of results-oriented works in a field where there is still not enough available data to train clinically viable models. We intend to open a discussion about critical points and to present new possibilities for future radiogenomics studies. We conducted high-dimensional data visualisation and developed classifiers, which allowed us to analyse the results for EGFR and KRAS biological markers according to different combinations of input features. We show that EGFR mutation status might be correlated to CT scans imaging phenotypes; however, the same does not seem to hold for KRAS mutation status. Also, the experiments suggest that the best way to approach this problem is by combining nodule-related features with features from other lung structures.
2020
Autores
Pedrosa, J; Aresta, G; Rebelo, J; Negrao, E; Ramos, I; Cunha, A; Campilho, A;
Publicação
XV MEDITERRANEAN CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING AND COMPUTING - MEDICON 2019
Abstract
Lung cancer is the deadliest type of cancer worldwide and late detection is one of the major factors for the low survival rate of patients. Low dose computed tomography has been suggested as a potential early screening tool but manual screening is costly, time-consuming and prone to interobserver variability. This has fueled the development of automatic methods for the detection, segmentation and characterisation of pulmonary nodules but its application to the clinical routine is challenging. In this study, a platform for the development, deployment and testing of pulmonary nodule computer-aided strategies is presented: LNDetector. LNDetector integrates image exploration and nodule annotation tools as well as advanced nodule detection, segmentation and classification methods and gaze characterisation. Different processing modules can easily be implemented or replaced to test their efficiency in clinical environments and the use of gaze analysis allows for the development of collaborative strategies. The potential use of this platform is shown through a combination of visual search, gaze characterisation and automatic nodule detection tools for an efficient and collaborative computer-aided strategy for pulmonary nodule screening.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.