2025
Autores
Castro, JT; Pinheiro, I; Marques, MN; Moura, P; dos Santos, FN;
Publicação
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Abstract
In nature, and particularly in agriculture, pollination is fundamental for the sustainability of our society. In this context, pollination is a vital process underlying crop yield quality and is responsible for the biodiversity and the standards of the flora. Bees play a crucial role in natural pollination; however, their populations are declining. Robots can help maintain pollination levels while humans work to recover bee populations. Swarm robotics approaches appear promising for robotic pollination. This paper proposes the cooperation between multiple Unmanned Aerial Vehicles (UAVs) and an Unmanned Ground Vehicle (UGV), leveraging the advantages of collaborative work for pollination, referred to as Pollinationbots. Pollinationbots is based in swarm behaviors and methodologies to implement more effective pollination strategies, ensuring efficient pollination across various scenarios. The paper presents the architecture of the Pollinationbots system, which was evaluated using the Webots simulator, focusing on path planning and follower behavior. Preliminary simulation results indicate that this is a viable solution for robotic pollination. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
2025
Autores
Oliveira, F; Tinoco, V; Valente, A; Pinho, T; Cunha, JB; Santos, FN;
Publicação
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2024, PT I
Abstract
Pruning consists on an agricultural trimming procedure that is crucial in some species of plants to promote healthy growth and increased yield. Generally, this task is done through manual labour, which is costly, physically demanding, and potentially dangerous for the worker. Robotic pruning is an automated alternative approach to manual labour on this task. This approach focuses on selective pruning and requires the existence of an end-effector capable of detecting and cutting the correct point on the branch to achieve efficient pruning. This paper reviews and analyses different end-effectors used in robotic pruning, which helped to understand the advantages and limitations of the different techniques used and, subsequently, clarified the work required to enable autonomous pruning.
2025
Autores
Benyoucef, A; Zennir, Y; Belatreche, A; Silva, MF; Benghanem, M;
Publicação
INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS
Abstract
Hexapod robots, with their six-legged design, excel in stability and adaptability on challenging terrain but pose significant control challenges due to their high degrees of freedom. While reinforcement learning (RL) has been explored for robot navigation, few studies have systematically compared on-policy and off-policy methods for multi-legged locomotion. This work presents a comparative study of SARSA and Q-Learning for trajectory control of a simulated hexapod robot, focusing on the influence of learning rate (alpha), discount factor (gamma), and eligibility trace (lambda). The evaluation spans eight initial poses, with performance measured through lateral deviation (Ey), orientation error (E theta), and iteration count. Results show that Q-Learning generally achieves faster convergence and greater stability, particularly with higher gamma and lambda values, while SARSA can achieve competitive accuracy with careful parameter tuning. The findings demonstrate that eligibility traces substantially improve learning precision and provide practical guidelines for robust RL-based control in multi-legged robotic systems.
2025
Autores
Silva, JA; Silva, MF; Oliveira, HP; Rocha, CD;
Publicação
APPLIED SCIENCES-BASEL
Abstract
Stroke often leads to severe motor impairment, especially in the upper limbs, greatly reducing a patient's ability to perform daily tasks. Effective rehabilitation is essential to restore function and improve quality of life. Traditional therapies, while useful, may lack engagement, leading to low motivation and poor adherence. Gamification-using game-like elements in non-game contexts-offers a promising way to make rehabilitation more engaging. The authors explore a gamified rehabilitation system designed in Unity 3D using a Kinect V2 camera. The game includes key features such as adjustable difficulty, real-time and predominantly positive feedback, user friendliness, and data tracking for progress. The evaluations were conducted with 18 healthy participants, most of whom had prior virtual reality experience. About 77% found the application highly motivating. While the gameplay was well received, the visual design was noted as lacking engagement. Importantly, all users agreed that the game offers a broad range of difficulty levels, making it accessible to various users. The results suggest that the system has strong potential to improve rehabilitation outcomes and encourage long-term use through enhanced motivation and interactivity.
2025
Autores
Rocha, CD; Carneiro, I; Torres, M; Oliveira, HP; Pires, EJS; Silva, MF;
Publicação
PROGRESS IN BIOMEDICAL ENGINEERING
Abstract
Stroke, a vascular disorder affecting the nervous system, is the third-leading cause of death and disability combined worldwide. One in every four people aged 25 and older will face the consequences of this condition, which typically causes loss of limb function, among other disabilities. The proposed review analyzes the mechanisms of stroke and their influence on the disease outcome, highlighting the critical role of rehabilitation in promoting recovery of the upper limb (UL) and enhancing the quality of life of stroke survivors. Common outcome measures and the specific targeted UL features are described, along with emerging supplementary therapies found in the literature. Stroke survivors often develop compensatory strategies to cope with limitations in UL function, which must be detected and corrected during rehabilitation to facilitate long-term recovery. Recent research on the automated detection of compensatory movements has explored pressure, wearable, marker-based motion capture systems, and vision sensors. Although current approaches have certain limitations, they establish a strong foundation for future innovations in post-stroke UL rehabilitation, promoting a more effective recovery.
2025
Autores
Pacheco, FD; Rebelo, PM; Sousa, RB; Silva, MF; Mendonça, HS;
Publicação
2025 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC
Abstract
Radio-Frequency IDentification (RFID) technologies automate the identification of objects and persons, having several applications in retail, manufacturing, and intralogistics sectors. Several works explore the application of RFID systems in robotics and intralogistics, focusing on locating robots, tags, and inventory management. This paper addresses the challenge of intralogistics cargo trolleys communicating their characteristics to an autonomous mobile robot through an RFID system. The robot must know the trolley's relative pose to avoid collisions with the surroundings. As a result, the passive tag on the cargo communicates information to the robot, including the base footprint of the trolley. The proposed RFID system includes the development of a controller board to interact with the frontend integrated circuit of an external antenna onboard the industrial mobile robot. Experimental results assess the system's readability distance in two distinct environments and with two different antenna modules. All the code and documentation are available in a public repository.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.