2020
Autores
Campos, J; Sharma, P; Albano, M; Ferreira, LL; Larranaga, M;
Publicação
APPLIED SCIENCES-BASEL
Abstract
This paper discusses the integration of emergent ICTs, such as the Internet of Things (IoT), the Arrowhead Framework, and the best practices from the area of condition monitoring and maintenance. These technologies are applied, for instance, for roller element bearing fault diagnostics and analysis by simulating faults. The authors first undertook the leading industry standards for condition-based maintenance (CBM), i.e., open system architecture-condition-based maintenance (OSA-CBM) and Machinery Information Management Open System Alliance (MIMOSA), which has been working towards standardizing the integration and interchangeability between systems. In addition, this paper highlights the predictive health monitoring methods that are needed for an effective CBM approach. The monitoring of industrial machines is discussed as well as the necessary details are provided regarding a demonstrator built on a metal sheet bending machine of the Greenbender family. Lastly, the authors discuss the benefits of the integration of the developed prototypes into a service-oriented platform, namely the Arrowhead Framework, which can be instrumental for the remotization of maintenance activities, such as the analysis of various equipment that are geographically distributed, to push forward the grand vision of the servitization of predictive health monitoring methods for large-scale interoperability.
2020
Autores
Albano, M; Ferreira, LL; Di Orio, G; Malo, P; Webers, G; Jantunen, E; Gabilondo, I; Viguera, M; Papa, G;
Publicação
AUTOMATIKA
Abstract
Collecting complex information on the status of machinery is the enabler for advanced maintenance activities, and one of the main players in this process is the sensor. This paper describes modern maintenance strategies that lead to Condition-Based Maintenance. This paper discusses the sensors that can be used to support maintenance, as of different categories, spanning from common off-the-shelf sensors, to specialized sensors monitoring very specific characteristics, and to virtual sensors. This paper also presents four different real-world examples of project pilots that make use of the described sensors and draws a comparison between them. In particular, each scenario has unique characteristics requiring different families of sensors, but on the other hand provides similar characteristics on other aspects.
2021
Autores
Ferreira, LL; Oliveira, A; Teixeira, N; Bulut, B; Landeck, J; Morgado, N; Sousa, O;
Publicação
IECON 2021 - 47TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY
Abstract
The remote maintenance of home appliances, like washing machines, air conditioning, and heating system is a complex problem, but with the help of the ongoing developments on Internet of Things, Data Analysis and Artificial Intelligence, the problem can now be tackled with success. This paper mostly focus in presenting the architecture developed within the aim of the SMART-PDM project for the acquisition of data on the operation of home appliances and then it also shows some preliminary results for washing machines, which give some hints on how to fine tune the system to achieve predictive maintenance and condition monitoring.
2022
Autores
Fonseca, T; Ferreira, LL; Landeck, J; Klein, L; Sousa, P; Ahmed, F;
Publicação
ENERGIES
Abstract
Renewable Energy Communities (RECs) are emerging as an effective concept and model to empower the active participation of citizens in the energy transition, not only as energy consumers but also as promoters of environmentally friendly energy generation solutions, particularly through the use of photovoltaic panels. This paper aims to contribute to the management and optimization of individual and community Distributed Energy Resources (DER). The solution follows a price and source-based REC management program, in which consumers' day-ahead flexible loads (Flex Offers) are shifted according to electricity generation availability, prices, and personal preferences, to balance the grid and incentivize user participation. The heuristic approach used in the proposed algorithms allows for the optimization of energy resources in a distributed edge-and-fog approach with a low computational overhead. The simulations performed using real-world energy consumption and flexibility data of a REC with 50 dwellings show an average cost reduction, taking into consideration all the seasons of the year, of 6.5%, with a peak of 12.2% reduction in the summer, and an average increase of 32.6% in individual self-consumption. In addition, the case study demonstrates promising results regarding grid load balancing and the introduction of intra-community energy trading.
2023
Autores
Fonseca, T; Chaves, P; Ferreira, LL; Gouveia, N; Costa, D; Oliveira, A; Landeck, J;
Publicação
DATA IN BRIEF
Abstract
The ability to predict the maintenance needs of machines is generating increasing interest in a wide range of indus-tries as it contributes to diminishing machine downtime and costs while increasing efficiency when compared to traditional maintenance approaches. Predictive maintenance (PdM) methods, based on state-of-the-art Internet of Things (IoT) systems and Artificial Intelligence (AI) techniques, are heavily dependent on data to create analytical models capa-ble of identifying certain patterns which can represent a mal-function or deterioration in the monitored machines. There-fore, a realistic and representative dataset is paramount for creating, training, and validating PdM techniques. This pa-per introduces a new dataset, which integrates real-world data from home appliances, such as refrigerators and wash-ing machines, suitable for the development and testing of PdM algorithms. The data was collected on various home ap-pliances at a repair center and included readings of elec-trical current and vibration at low (1 Hz) and high (2048 Hz) sampling frequencies. The dataset samples are filtered and tagged with both normal and malfunction types. An ex-tracted features dataset, corresponding to the collected work-ing cycles is also made available. This dataset could bene- fit research and development of AI systems for home ap-pliances' predictive maintenance tasks and outlier detection analysis. The dataset can also be repurposed for smart-grid or smart-home applications, predicting the consumption pat-terns of such home appliances.(c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
2013
Autores
Garibay Martinez, R; Ferreira, LL; Maia, C; Pinho, LM;
Publicação
2018 8TH IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL EMBEDDED SYSTEMS (SIES)
Abstract
An increasing number of real-time embedded applications present high computation requirements which need to be realized within strict time constraints. Simultaneously, architectures are becoming more and more heterogeneous, programming models are having difficulty in scaling or stepping outside of a particular domain, and programming such solutions requires detailed knowledge of the system and the skills of an experienced programmer. In this context, this paper advocates the transparent integration of a parallel and distributed execution framework, capable of meeting real-time constraints, based on OpenMP programming model, and using MPI as the distribution mechanism. The paper also introduces our modified implementation of GCC compiler, enabled to support such parallel and distributed computations, which is evaluated through a real implementation. This evaluation gives important hints, towards the development of the parallel/distributed fork-join framework for supporting real-time embedded applications.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.