2013
Autores
Brigida, ACS; Nascimento, IM; Chesini, G; Hayashi, JG; Baptista, JM; Costa, JCWA; Martinez, MAG; Jorge, PAS; Cordeiro, CMB;
Publicação
FIFTH EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS
Abstract
In this paper a spun elliptically birefringent photonic crystal fiber is fabricated and characterized. Its performance as a current sensor, using a polarimetric configuration, was tested and compared against single mode fiber at 633 nm. In particular the sensor sensitivity and linearity was investigated using fiber loops with different radius or number of turns around the conductor. The results obtained show that the spun fiber (40 rotation per meter) is able to suppress quite effectively the effects of the bend induced birefringence as compared to the standard fiber.
2013
Autores
Nascimento, IM; Gouveia, C; Jana, S; Bera, S; Baptista, JM; Moreira, P; Biwas, P; Bandyopadhyay, S; Jorge, PAS;
Publicação
8TH IBEROAMERICAN OPTICS MEETING AND 11TH LATIN AMERICAN MEETING ON OPTICS, LASERS, AND APPLICATIONS
Abstract
A fiber optic sensor for high sensitivity refractive index and temperature measurement able to withstand temperature up to 450 degrees C is reported. Two identical LPG gratings were fabricated, whereas one was coated with a high refractive index (similar to 1.78) sol-gel thin film in order to increase its sensitivity to the external refractive index. The two sensors were characterized and compared in refractive index and temperature. Sensitivities of 1063 nm/RIU (1.338 - 1.348) and 260 pm/degrees C were achieved for refractive index and temperature, respectively.
2013
Autores
Gouveia, C; Chesini, G; Cordeiro, CMB; Baptista, JM; Jorge, PAS;
Publicação
SENSORS AND ACTUATORS B-CHEMICAL
Abstract
A fiber optic sensor for simultaneous measurement of refractive index and temperature is presented. The sensing probe is realized by introducing a multimode interference device inside a high birefringence fiber loop mirror resulting in a configuration capable of refractive index and temperature discrimination. The multimode interference peak is sensitive to the surrounding refractive index (90 nm/RIU) and slightly responsive to the temperature (0.01 nm/ degrees C). On the other hand, the birefringent fiber loop mirror is highly sensitive to temperature (2.36 nm/ degrees C) and it has almost no response to refractive index. Using a power ratiometric peak detection scheme, a temperature independent refractive index measurement can be achieved with a resolution of +/- 2.25 x 10(-5) RIU.
2014
Autores
Viveiros, D; Ribeiro, J; Carvalho, JP; Ferreira, J; Pinto, AMR; Perez Herrera, RA; Diaz, S; Lopez Gil, A; Dominguez Lopez, A; Esteban, O; Martins, HF; Martin Lopez, S; Baierl, H; Auguste, JL; Jamier, R; Rougier, S; Santos, JL; Flores, D; Roy, P; Gonzalez Herraez, M; Lopez Amo, M; Baptista, JM;
Publicação
23RD INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS
Abstract
The combustion of coal wastes resulting from mining is of particular environmental concern and therefore the importance of the proper management involving real-time assessment of their status and identification of probable evolution scenarios is recognized. Continuous monitoring of combustion temperature and emission levels of certain gases opens the possibility to plan corrective actions to minimize their negative impact in the surroundings. Optical fiber technology is well-suited to this purpose and in this work it is described the main attributes of a fiber optic sensing system projected to gather data on distributed temperature and gas emission in these harsh environments.
2017
Autores
Nascimento, IM; Chesini, G; Baptista, JM; Cordeiro, CMB; Jorge, PAS;
Publicação
IEEE SENSORS JOURNAL
Abstract
A long-period grating (LPG) written on a standard single mode fiber is investigated as a fiber optic sensor for vibration and magnetic field sensing. It is demonstrated the high sensitivity of the device to applied curvature and the possibility to monitor vibration in a wide range of frequencies from 30 Hz to 2000 Hz. The system was tested using intensity-based interrogation scheme, providing a frequency discrimination of 913 mHz. The goal of these tests was to evaluate the sensor as a passive vibration monitor in the detection of changes in resonant vibration frequencies of support infrastructures can provide information on its degradation. Furthermore, taking advantage of the intrinsic sensitivity to micro strain, alternating magnetic fields were also measured using an intensity-based interrogation scheme by coupling a Terfenol-D magnetostrictive rod to a pre-strained LPG sensor, providing a resolution below 5.61 mu T-rms/root Hz from 1.22 mT(rms) up to 2.53 mT(rms).
2015
Autores
Lopez Aldaba, A; Rodrigues Pinto, AMR; Lopez Amo, M; Frazao, O; Santos, JL; Baptista, JM; Baierl, H; Auguste, JL; Jamier, R; Roy, P;
Publicação
SENSORS
Abstract
A hybrid Fabry-Perot cavity sensing head based on a four-bridge microstructured fiber is characterized for temperature sensing. The characterization of this cavity is performed numerically and experimentally in the L-band. The sensing head output signal presents a linear variation with temperature changes, showing a sensitivity of 12.5 pm/degrees C. Moreover, this Fabry-Perot cavity exhibits good sensitivity to polarization changes and high stability over time.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.