2023
Autores
Claro, RM; Pereira, MI; Neves, FS; Pinto, AM;
Publicação
IEEE ACCESS
Abstract
The use of Unmanned Aerial Vehicles (UAVs) in different inspection tasks is increasing. This technology reduces inspection costs and collects high quality data of distinct structures, including areas that are not easily accessible by human operators. However, the reduced energy available on the UAVs limits their flight endurance. To increase the autonomy of a single flight, it is important to optimize the path to be performed by the UAV, in terms of energy loss. Therefore, this work presents a novel formulation of the Travelling Salesman Problem (TSP) and a path planning algorithm that uses a UAV energy model to solve this optimization problem. The novel TSP formulation is defined as Asymmetric Travelling Salesman Problem with Precedence Loss (ATSP-PL), where the cost of moving the UAV depends on the previous position. The energy model relates each UAV movement with its energy consumption, while the path planning algorithm is focused on minimizing the energy loss of the UAV, ensuring that the structure is fully covered. The developed algorithm was tested in both simulated and real scenarios. The simulated experiments were performed with realistic models of wind turbines and a UAV, whereas the real experiments were performed with a real UAV and an illumination tower. The inspection paths generated presented improvements over 24% and 8%, when compared with other methods, for the simulated and real experiments, respectively, optimizing the energy consumption of the UAV.
2023
Autores
Neves, FS; Claro, RM; Pinto, AM;
Publicação
SENSORS
Abstract
A perception module is a vital component of a modern robotic system. Vision, radar, thermal, and LiDAR are the most common choices of sensors for environmental awareness. Relying on singular sources of information is prone to be affected by specific environmental conditions (e.g., visual cameras are affected by glary or dark environments). Thus, relying on different sensors is an essential step to introduce robustness against various environmental conditions. Hence, a perception system with sensor fusion capabilities produces the desired redundant and reliable awareness critical for real-world systems. This paper proposes a novel early fusion module that is reliable against individual cases of sensor failure when detecting an offshore maritime platform for UAV landing. The model explores the early fusion of a still unexplored combination of visual, infrared, and LiDAR modalities. The contribution is described by suggesting a simple methodology that intends to facilitate the training and inference of a lightweight state-of-the-art object detector. The early fusion based detector achieves solid detection recalls up to 99% for all cases of sensor failure and extreme weather conditions such as glary, dark, and foggy scenarios in fair real-time inference duration below 6 ms.
2023
Autores
Claro, RM; Silva, DB; Pinto, AM;
Publicação
ROBOTICS AND AUTONOMOUS SYSTEMS
Abstract
For Vertical Take-Off and Landing Unmanned Aerial Vehicles (VTOL UAVs) to operate autonomously and effectively, it is mandatory to endow them with precise landing abilities. The UAV has to be able to detect the landing target and to perform the landing maneuver without compromising its own safety and the integrity of its surroundings. However, current UAVs do not present the required robustness and reliability for precise landing in highly demanding scenarios, particularly due to their inadequacy to perform accordingly under challenging lighting and weather conditions, including in day and night operations.This work proposes a multimodal fiducial marker, named ArTuga (Augmented Reality Tag for Unmanned vision-Guided Aircraft), capable of being detected by an heterogeneous perception system for accurate and precise landing in challenging environments and daylight conditions. This research combines photometric and radiometric information by proposing a real-time multimodal fusion technique that ensures a robust and reliable detection of the landing target in severe environments.Experimental results using a real multicopter UAV show that the system was able to detect the proposed marker in adverse conditions (such as at different heights, with intense sunlight and in dark environments). The obtained average accuracy for position estimation at 1 m height was of 0.0060 m with a standard deviation of 0.0003 m. Precise landing tests obtained an average deviation of 0.027 m from the proposed marker, with a standard deviation of 0.026 m. These results demonstrate the relevance of the proposed system for the precise landing in adverse conditions, such as in day and night operations with harsh weather conditions.(c) 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
2023
Autores
Zajzon, N; Topa, BA; Papp, RZ; Aaltonen, J; Almeida, JM; Almeida, C; Martins, A; Bodó, B; Henley, S; Pinto, MT; Zibret, G;
Publicação
EUROPEAN GEOSCIENCES UNION GENERAL ASSEMBLY 2023, EGU DIVISION ENERGY, RESOURCES & ENVIRONMENT, ERE
Abstract
The UNEXMIN (Horizon 2020) and UNEXUP (EIT RawMaterials) projects developed a novel technology to send robots and even autonomously deliver optical images, 3D maps and other georeferenced scientific data from flooded underground environments, like abandoned mines, caves or wells. The concept turned into a market ready solution in seven years, where the last few years of field trials of the development beautifully demonstrating the technology's premier capabilities. Here in this paper, we focus on the wide variety of environments, circumstances and measurements where the UNEXMIN technology can be the best solution or the only solution to deliver certain research or engineering data. These are obtained from both simple and complex environments like different mines and caves, small and large cavities, long and tight tunnels and shafts, different visibility conditions, even different densities of the liquid medium where UX robots operated.
2023
Autores
Carneiro, A; Silva, G; Marques, P; Marques, A; Dias, N; Almeida, C; Magalhaes, C; Martins, A;
Publicação
OCEANS 2023 - LIMERICK
Abstract
Water bodies are complex and interconnected systems that play a crucial role in both our environment and our economy. Studying these water bodies is therefore essential but collecting and analyzing water samples can be challenging, particularly when dealing with large volumes of water. This article presents a system capable of autonomously filtering large volumes of water through standard marine biology filters and preserving them to later be analyzed. The system's preliminary results are presented in this paper.
2023
Autores
Lemos, R; Cabral, R; Ribeiro, D; Santos, R; Alves, V; Dias, A;
Publicação
APPLIED SCIENCES-BASEL
Abstract
In recent years, Artificial Intelligence (AI) provided essential tools to enhance the productivity of activities related to civil engineering, particularly in design, construction, and maintenance. In this framework, the present work proposes a novel AI computer vision methodology for automatically identifying the corrosion phenomenon on roofing systems of large-scale industrial buildings. The proposed method can be incorporated into computational packages for easier integration by the industry to enhance the inspection activities' performance. For this purpose, a dedicated image database with more than 8k high-resolution aerial images was developed for supervised training. An Unmanned Aerial Vehicle (UAV) was used to acquire remote georeferenced images safely and efficiently. The corrosion anomalies were manually annotated using a segmentation strategy summing up 18,381 instances. These anomalies were identified through instance segmentation using the Mask based Region-Convolution Neural Network (Mask R-CNN) framework adjusted to the created dataset. Some adjustments were performed to enhance the performance of the classification model, particularly defining an adequate input image size, data augmentation strategy, Intersection over a Union (IoU) threshold during training, and type of backbone network. The inferences show promising results, with correct detections even under complex backgrounds, poor illumination conditions, and instances of significantly reduced dimensions. Furthermore, in scenarios without a roofing system, the model proved reliable, not producing any false positive occurrences. The best model achieved metrics' values equal to 65.1% for the bounding box detection Average Precision (AP) and 59.2% for the mask AP, considering an IoU of 50%. Regarding classification metrics, the precision and recall were equal to 85.8% and 84.0%, respectively. The developed methodology proved to be extremely valuable for guiding infrastructure managers in taking physically informed decisions based on the real assets condition.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.