2009
Autores
Jesus, C; Silva, SFO; Castanheira, M; GonzalezAguilar, G; Frazao, O; Jorge, PAS; Baptista, JM;
Publicação
MEASUREMENT SCIENCE & TECHNOLOGY
Abstract
An optical fibre sensor for determination of acetic acid is presented. The sensing probe is based on a fibre Bragg grating (FBG) Fabry-Perot cavity, coated with a thin film of sol-gel-PVP (polyvinylpyrrolidone) composite material. The polymeric thin film renders the interferometric output sensitive to the presence of carboxylic acid species. Results show that the wavelength of the interferometric peaks changes with acetic acid concentration, enabling its quantification. Coupling the fibre probe with a serrodyne modulated readout interferometer enables pseudo-heterodyne interrogation and the detection of acetic acid with a sensitivity of 92.6 deg/% L/L and a resolution of 0.2% L/L. The results demonstrate the potential of the proposed scheme to operate as a sensitive chemical sensor platform.
2010
Autores
Correia, C; Baptista, JM; Marques, MB; Frazao, O;
Publicação
FOURTH EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS
Abstract
In this work, a laser sensor that uses the multipath interference produced inside a ring cavity to measure the power loss induced by a moving taper intensity sensor is described. The laser is created due to the virtual distributed mirror formed by the Rayleigh scattering produced in a dispersion compensating fibre when pumped by a Raman laser. Two laser peaks were formed, one of them is obtained by the Raman gain (1555 nm) inside the ring and the second is created by the combination of the Raman gain and the Rayleigh scattering (1565 nm). A taper sensor is used as displacement sensor and with the increases of losses the second laser peak amplitude is reduced. In the process the first peak is maintained constant and can be used as reference level.
2010
Autores
Frazao, O; Amaral, LMN; Baptista, JM; Roy, P; Jamier, R; Fevrier, S;
Publicação
IEEE PHOTONICS TECHNOLOGY LETTERS
Abstract
The strain and temperature sensing characteristics of a modal interferometer based on two Bragg fibers have been investigated. The special nature of this sensor is that the two Bragg fibers used present a different external cladding shape. It appears that the sensitivity to the sensing parameters are different for the two Bragg fibers, which makes it possible to fabricate several sensing configurations based on the combination of these two Bragg fibers for strain and temperature discrimination.
2011
Autores
Carvalho, AP; Silva, SO; Baptista, JM; Malcata, FX;
Publicação
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
Abstract
In order to enhance microalgal growth in photobioreactors (PBRs), light requirement is one of the most important parameters to be addressed; light should indeed be provided at the appropriate intensity, duration, and wavelength. Excessive intensity may lead to photo-oxidation and -inhibition, whereas low light levels will become growth-limiting. The constraint of light saturation may be overcome via either of two approaches: increasing photosynthetic efficiency by genetic engineering, aimed at changing the chlorophyll antenna size; or increasing flux tolerance, via tailoring the photonic spectrum, coupled with its intensity and temporal characteristics. These approaches will allow an increased control over the illumination features, leading to maximization of microalgal biomass and metabolite productivity. This minireview briefly introduces the nature of light, and describes its harvesting and transformation by microalgae, as well as its metabolic effects under excessively low or high supply. Optimization of the photosynthetic efficiency is discussed under the two approaches referred to above; the selection of light sources, coupled with recent improvements in light handling by PBRs, are chronologically reviewed and critically compared.
2011
Autores
Ferreira, MS; Baptista, JM; Roy, P; Jamier, R; Fevrier, S; Frazao, O;
Publicação
OPTICS LETTERS
Abstract
A highly birefringent photonic bandgap Bragg fiber loop mirror configuration for simultaneous measurement of strain and temperature is proposed. The group birefringence and the sharp loss peaks are observable in the spectral response. Because the sensing head presents different sensitivities for strain and temperature measurands, these physical parameters can be discriminated by using the matrix method. It should be noted that this Bragg fiber presents high sensitivity to temperature, of similar to 5.75 nm/degrees C, due to the group birefringence variation. The rms deviations obtained are +/- 19.32 mu e and +/- 0.5 degrees C, for strain and temperature measurements, respectively. (C) 2011 Optical Society of America
2011
Autores
Baptista, JM; Correia, C; Marques, MB; Frazao, O;
Publicação
LASER PHYSICS
Abstract
In this work, a laser sensor is described that uses the multipath interference produced inside a ring cavity to measure the power loss induced by a moving taper intensity sensor. The laser is created due to the virtual distributed mirror formed by the Rayleigh scattering produced in a dispersion compensating fiber when pumped by a Raman laser. Two laser peaks were formed, one of them is obtained by the Raman gain (1555 nm) inside the ring and the second is created by the combination of the Raman gain and the Rayleigh scattering (1565 nm). A taper sensor is used as displacement sensor and when the losses is applied in the taper the second laser peak is reduced and the first peak is maintained constant and can be used as reference level.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.