Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRAS

2024

Depth Control of an Underwater Sensor Platform: Comparison between Variable Buoyancy and Propeller Actuated Devices

Autores
Carneiro, JF; Pinto, JB; de Almeida, FG; Cruz, NA;

Publicação
SENSORS

Abstract
Underwater long-endurance platforms are crucial for continuous oceanic observation, allowing for sustained data collection from a multitude of sensors deployed across diverse underwater environments. They extend mission durations, reduce maintenance needs, and significantly improve the efficiency and cost-effectiveness of oceanographic research endeavors. This paper investigates the closed-loop depth control of actuation systems employed in underwater vehicles, focusing on the energy consumption of two different mechanisms: variable buoyancy and propeller actuated devices. Using a prototype previously developed by the authors, this paper presents a detailed model of the vehicle using both actuation solutions. The proposed model, although being a linear-based one, accounts for several nonlinearities that are present such as saturations, sensor quantization, and the actuator brake model. Also, it allows a simple estimation of the energy consumption of both actuation solutions. Based on the developed models, this study then explores the intricate interplay between energy consumption and control accuracy. To this end, several PID-based controllers are developed and tested in simulation. These controllers are used to evaluate the dynamic response and power requirements of variable buoyancy systems and propeller actuated devices under various operational conditions. Our findings contribute to the optimization of closed-loop depth control strategies, offering insights into the trade-offs between energy efficiency and system effectiveness in diverse underwater applications.

2024

Comparison of Pallet Detection and Location Using COTS Sensors and AI Based Applications

Autores
Caldana, D; Carvalho, R; Rebelo, PM; Silva, MF; Costa, P; Sobreira, H; Cruz, N;

Publicação
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE ADVANCES IN ROBOTICS, VOL 1

Abstract
Autonomous Mobile Robots (AMR) are seeing an increased introduction in distinct areas of daily life. Recently, their use has expanded to intralogistics, where forklift type AMR are applied in many situations handling pallets and loading/unloading them into trucks. One of the these vehicles requirements, is that they are able to correctly identify the location and status of pallets, so that the forklifts AMR can insert the forks in the right place. Recently, some commercial sensors have appeared in the market for this purpose. Given these considerations, this paper presents a comparison of the performance of two different approaches for pallet detection: using a commercial off-the-shelf (COTS) sensor and a custom developed application based on Artificial Intelligence algorithms applied to an RGB-D camera, where both the RGB and depth data are used to estimate the position of the pallet pockets.

2024

Probabilistic Positioning of a Mooring Cable in Sonar Images for In-Situ Calibration of Marine Sensors

Autores
Oliveira, AJ; Ferreira, BM; Cruz, NA; Diamant, R;

Publicação
IEEE TRANSACTIONS ON MOBILE COMPUTING

Abstract
The calibration of sensors stationed along a cable in marine observatories is a time-consuming and expensive operation that involves taking the mooring out of the water periodically. In this paper, we present a method that allows an underwater vehicle to approach a mooring, in order to take reference measurements along the cable for in-situ sensor calibration. We use the vehicle's Mechanically Scanned Imaging Sonar (MSIS) to identify the cable's reflection within the sonar image. After pre-processing the image to remove noise, enhance contour lines, and perform smoothing, we employ three detection steps: 1) selection of regions of interest that fit the cable's reflection pattern, 2) template matching, and 3) a track-before-detect scheme that utilized the vehicle's motion. The later involves building a lattice of template matching responses for a sequence of sonar images, and using the Viterbi algorithm to find the most probable sequence of cable locations that fits the maximum speed assumed for the surveying vessel. Performance is explored in pool and sea trials, and involves an MSIS onboard an underwater vehicle scanning its surrounding to identify a steel-core cable. The results show a sub-meter accuracy in the multi-reverberant pool environment and in the sea trial. For reproducibility, we share our implementation code.

2024

Volumetric Gradient-Aware Methodology for the Exploration of Foreign Objects in the Seabed

Autores
Silva, R; Pereira, P; Matos, A; Pinto, A;

Publicação
Oceans Conference Record (IEEE)

Abstract
The underwater domain presents a myriad of challenges for perception systems that must be overcome to achieve accurate object detection and recognition. To augment the performance and safety of existing solutions for intricate O&M (Operations and Maintenance) procedures, AUVs must perceive the surroundings and locate potential objects of interest based on the perceived information. A depth gradient methodology is employed to survey the seabed using a multibeam sonar to perform a coarse reconstruction of the scenario that it later used to locate and identify foreign objects. This could include rocks, debris, wreckage, or other objects that may pose potential exploratory interest. First results show that the proposed method was able to detect 100 % of the objects present in the scenario with an average chamfer distance error of 0.0238m between models and respective reconstruction. © 2024 IEEE.

2024

Predicting weight dispersion in seabass aquaculture using Discrete Event System simulation and Machine Learning modeling

Autores
Navarro, LC; Azevedo, A; Matos, A; Rocha, A; Ozorio, R;

Publicação
AQUACULTURE REPORTS

Abstract
Marine aquaculture, particularly in the Mediterranean region, faces the challenge of minimizing growth dispersion, which has a direct impact on the production cycle, market value and sustainability of the sector. Conventional grading methods are resource intensive and potentially detrimental to fish health. The current study presented an innovative approach in predicting fish weight dispersion in European seabass (Dicentrarchus labrax) aquaculture. Seabass is one of the two major fish species cultivated on the Mediterranean coast, with a fattening cycle of 18-24 months. During this period, several grading operations are carried out to minimize growth dispersion. The intricate feed-fish-water system, characterized by complex interactions among feeding regimes, fish behavior, individual metabolism and environmental factors, is the focus of the study. The comprehensive, five-step methodology addresses this complexity. The process begins with a Discrete Event System (DES) model that simulates the feed-fish-water dynamics, taking into account individual fish metabolism. This is followed by the development of a surrogate machine learning (ML) regressor model, which is trained on DES simulation data to efficiently predict growth distribution. The model is then calibrated and customized for specific fish stocks and production tanks. The preliminary results from 21 tanks in two trials with European seabass (D. labrax) showed the effectiveness of the method. The results from the simulation models achieved a R2 of 99.9 % and a Mean Absolute Percentage Error (MAPE) of 1.1 % for the prediction of mean final weight and a R2 of 90.3 % with a MAPE of 8.1 % for the standard deviation of final weight. In summary, this study represents a significant advance in the planning and management of seabass aquaculture. Given the lack of effective prediction tools in the aquaculture industry, the proposed methodology has the potential to reduce risks and inefficiencies, thus possibly optimizing aquaculture practices by increasing sustainability and profitability.

2024

Autonomous Underwater Vehicle for System Identification Education

Autores
dos Santos, PL; Perdicoúlis, TPA; Ferreira, BM; Gonçalves, C;

Publicação
IFAC PAPERSONLINE

Abstract
This paper advocates for the integration of system identification in graduate-level control system courses using accessible theoretical tools. Emphasising real-world applications, particularly in Remotely Operated Vehicle (ROV), the study proposes ROV as educational platforms for teaching control principles. As a concrete example, the paper presents a graduation course project focusing on designing a depth control system for an ROV, where students derive the model from experimental data. This practical application not only enhances the students skills in system identification but also prepares them for challenges in controlling complex systems in both academic and industrial settings.

  • 11
  • 180