Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Isabel Alexandra Pinheiro

2025

Arbutus Berry Detection and Classification for Harvesting

Autores
Pereira, J; Baltazar, AR; Pinheiro, I; da Silva, DQ; Frazao, ML; Neves Dos Santos, FN;

Publicação
IEEE International Conference on Emerging Technologies and Factory Automation, ETFA

Abstract
Automated fruit harvesting systems rely heavily on accurate visual perception, particularly for crops such as the Arbutus tree (Arbutus unedo), which holds both ecological and economic significance. However, this species poses considerable challenges for computer vision due to its dense foliage and the morphological variability of its berries across different ripening stages. Despite its importance, the Arbutus tree remains under-explored in the context of precision agriculture and robotic harvesting. This study addresses that gap by evaluating a computer vision-based approach to detect and classify Arbutus berries into three ripeness categories: green, yellow-orange, and red. A significant contribution of this work is the release of two fully annotated open-access datasets, Arbutus Berry Detection Dataset and Arbutus Berry Ripeness Level Detection Dataset, developed through a structured manual labeling process. Additionally, we benchmarked four YOLO architectures - YOLOv8n, YOLOv9t, YOLOv10n, and YOLO11n - as well as the RT-DETR models, using these datasets. Among these, RT-DETR-L demonstrated the most consistent performance in terms of precision, recall, and generalization, outperforming the lighter YOLO models in both speed and accuracy. This highlights RT-DETR's strong potential for deployment in real-time automated harvesting systems, where robust detection and efficient inference are critical. © 2025 IEEE.

2026

Economic benchmarking of assisted pollination methods for kiwifruit flowers: Assessment of cost-effectiveness of robotic solution

Autores
Pinheiro, I; Moura, P; Rodrigues, L; Pacheco, AP; Teixeira, JG; Valente, LG; Cunha, M; Neves Dos Santos, FN;

Publicação
Agricultural Systems

Abstract
In 2023, global kiwifruit production reached over 4.4 million tonnes, highlighting the crop's significant economic importance. However, achieving high yields depends on adequate pollination. In Actinidia species, pollen is transferred by insects from male to female flowers on separate plants. Natural pollination faces increasing challenges due to the decline in pollinator populations and climate variability, driving the adoption of assisted pollination methods. This study examines the Portuguese kiwifruit sector, one of the world's top 12 producers, using a novel mixed-methods approach that integrates both qualitative and quantitative analyses to assess the feasibility of robotic pollination. The qualitative study identifies the benefits and challenges of current methods and explores how robotic pollination could address these challenges. The quantitative analysis explores the cost-effectiveness and practicality of implementing robotic pollination as a product and service. Findings indicate that most farmers use handheld pollination devices but face pollen wastage and application timing challenges. Economic analysis establishes a break-even point of €685 per hectare for an annual single application, with a first robotic pollination of €17 146 becoming cost-effective for orchards of at least 3.5 hectares and a second robotic solution of €34 293 becoming cost-effective for orchards up to 7 hectares. A robotic pollination service priced at €685 per hectare per application presents a low-risk and a viable alternative for growers. This study provides robust economic insights supporting the adoption of robotic pollination technologies. This study is crucial to make informed decisions to enhance kiwifruit production's productivity and sustainability through precise robotic-assisted pollination. © 2025 Elsevier B.V., All rights reserved.

  • 2
  • 2