Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Aline Santos Silva

2021

Invisible ECG for High Throughput Screening in eSports

Autores
Silva, AS; Correia, MV; Silva, HP;

Publicação
SENSORS

Abstract
eSports is a rapidly growing industry with increasing investment and large-scale international tournaments offering significant prizes. This has led to an increased focus on individual and team performance with factors such as communication, concentration, and team intelligence identified as important to success. Over a similar period of time, personal physiological monitoring technologies have become commonplace with clinical grade assessment available across a range of parameters that have evidenced utility. The use of physiological data to assess concentration is an area of growing interest in eSports. However, body-worn devices, typically used for physiological data collection, may constitute a distraction and/or discomfort for the subjects. To this end, in this work we devise a novel "invisible " sensing approach, exploring new materials, and proposing a proof-of-concept data collection system in the form of a keyboard armrest and mouse. These enable measurements as an extension of the interaction with the computer. In order to evaluate the proposed approach, measurements were performed using our system and a gold standard device, involving 7 healthy subjects. A particularly advantageous characteristic of our setup is the use of conductive nappa leather, as it preserves the standard look and feel of the keyboard and mouse. According to the results obtained, this approach shows 3-15% signal loss, with a mean difference in heart rate between the reference and experimental device of -1.778 & PLUSMN; 4.654 beats per minute (BPM); in terms of ECG waveform morphology, the best cases show a Pearson correlation coefficient above 0.99.

2022

Identity Recognition in Sanitary Facilities Using Invisible Electrocardiography

Autores
Silva, AS; Correia, MV; de Melo, F; da Silva, HP;

Publicação
SENSORS

Abstract
This article proposes a new method of identity recognition in sanitary facilities based on electrocardiography (ECG) signals. Our team previously proposed a novel approach of invisible ECG at the thighs using polymeric electrodes, leading to the creation of a proof-of-concept system integrated into a toilet seat. In this work, a biometrics pipeline was devised, which tested four different classifiers, varying the population from 2 to 17 subjects and simulating a residential environment. However, for this approach to be industrially viable, further optimization is required, particularly regarding electrode materials that are compatible with industrial processes. As such, we also explore the use of a conductive silicone material as electrodes, aiming at the industrial-scale production of a toilet seat capable of recording ECG data, without the need for body-worn devices. A desirable aspect when using such a system is matching the recorded data with the monitored user, ideally using a minimal sensor set, further reinforcing the relevance of user identification through ECG signals collected at the thighs. Our approach was evaluated against a reference device for a population of 17 healthy and pathological individuals, covering a wide age range (24-70 years). With the silicone composite, we were able to acquire signals in 100% of the sessions, with a mean heart rate deviation between a reference system and our experimental device of 2.82 +/- 1.99 beats per minute (BPM). In terms of ECG waveform morphology, the best cases showed a Pearson correlation coefficient of 0.91 +/- 0.06. For biometric detection, the best classifier was the Binary Convolutional Neural Network (BCNN), with an accuracy of 100% for a population of up to four individuals.

2023

Towards Industrially Feasible Invisible Electrocardiography (ECG) in Sanitary Facilities

Autores
Silva, AD; Correia, MV; Costa, A; da Silva, HP;

Publicação
2023 IEEE 7TH PORTUGUESE MEETING ON BIOENGINEERING, ENBENG

Abstract
Previous work from our team, has proposed a novel approach to invisible electrocardiography (ECG) in sanitary facilities using polymeric electrodes, leading to the creation of a proof-of-concept system integrated in a toilet seat. However, for this approach to be industrially feasible, further optimization is needed, in particular in what concerns electrode materials compatible with injection moulding processes. In this paper we explore the use of different types of conductive materials as electrodes, aiming at industrial-scale production of a toilet seat capable of recording ECG data, without the need for bodyworn devices. In addition, the effect of cleaning agents applied to the materials over time. Our approach has been evaluated comparatively with a gold standard device, for a population of 15 healthy subjects. While some of the materials did not allow adequate signal acquisition in all users, one electrically conductive compound showed the best results as per heart rate and ECG waveform morphology analysis. For the best performing compound we were able to acquire signals in 100% of the sessions, with an average heart rate deviation between the reference and experimental systems of -3.67 +/- 5.05 beats per minute (BPM). In terms of ECG waveform morphology, the best cases showed a Pearson correlation coefficient of 0.99.

2024

Evaluation of Biometric Template Permanence for Electrocardiography (ECG) Based User Identification in Sanitary Facilities

Autores
Silva, AD; Correia, MV; da Silva, HP;

Publicação
2024 IEEE 22ND MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, MELECON 2024

Abstract
In our previous work, we explored a new invisible ECG biometrics approach that uses signals collected at the thighs using polymeric dry electrodes and sensors integrated into a toilet seat. However, the performance of the biometric templates remains unexplored. In this paper we evaluate how the ECG templates evolve, and the impact that potential changes may have on performance, using one case-study subject monitored over 31 days. This work is organized into two main parts. The first explores the morphological and physical traits of the subject throughout the 31 days based on data collected daily, three times per day at 6-hour intervals; in more than 80% of the sessions, all the signals were successfully acquired without showing noise nor movement artefacts. The second part is focused on evaluating the performance of Support Vector Machine (SVM) and Binary Convolutional Neural Network (BCNN) classifiers in the identification of the case study subject within a population of 10 individuals, covering an age range of (24 to 35 years); the top performer was the BCNN, achieving a perfect accuracy rate of 100% when tested on a group of two individuals.

2024

Invisibles: A New Frontier in Vital Signs Monitoring

Autores
Silva, AS; Correia, MV; Plácido da Silva, H;

Publicação
NATO Science for Peace and Security Series - D: Information and Communication Security - Modern Technologies Enabling Innovative Methods for Maritime Monitoring and Strengthening Resilience in Maritime Critical Infrastructures

Abstract
In the field of vital signs monitoring, there is a growing trend towards transposing monitoring technologies into people’s daily lives. Currently, the work revolves around wearables. However, wearables have known limitations, mainly the need for voluntary actions to acquire the signals of interest, low battery life, and abandonment, which leads to the search for new solutions. An evolution is the integration of sensors into the environment or everyday objects through invisible devices (also known as “off the person” sensing). Properly assessing and matching the patient and their caregiver to the appropriate monitoring technology, while considering the suitability of the home environment for device operation and maintenance is a challenge that depends on sound human factors principles. This article reviews the current key features and technologies to provide an overview of the existing invisibles landscape.

2016

Influence of low contents of superhydrophilic MWCNT on the properties and cell viability of electrospun poly (butylene adipate-co-terephthalate) fibers

Autores
Rodrigues, BVM; Silva, AS; Melo, GFS; Vasconscellos, LMR; Marciano, FR; Lobo, AO;

Publicação
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS

Abstract
The use of poly (butylene adipate-co-terephthalate) (PBAT) in tissue engineering, more specifically in bone regeneration, has been underexplored to date due to its poor mechanical resistance. In order to overcome this drawback, this investigation presents an approach into the preparation of electrospun nanocomposite fibers from PBAT and low contents of superhydrophilic multi-walled carbon nanotubes (sMWCNT) (0.1-0.5 wt.%) as reinforcing agent. We employed a wide range of characterization techniques to evaluate the properties of the resulting electrospun nanocomposites, including Field Emission Scanning Electronic Microscopy (FE-SEM), Transmission Electronic Microscopy (TEM), tensile tests, contact angle measurements (CA) and biological assays. FE-SEM micrographs showed that while the addition of sMWCNT increased the presence of beads on the electrospun fibers' surfaces, the increase of the neat charge density due to their presence reduced the fibers' average diameter. The tensile test results pointed that sMWCNT acted as reinforcement in the PBAT electrospun matrix, enhancing its tensile strength (from 1.3 to 3.6 MPa with addition of 0.5 wt.% of sMWCNT) and leading to stiffer materials (lower elongation at break). An evaluation using MG63 cells revealed cell attachment into the biomaterials and that all samples were viable for biomedical applications, once no cytotoxic effect was observed. MG-63 cells osteogenic differentiation, measured by ALP activity, showed that mineralized nodules formation was increased in PBAT/0.5%CNTs when compared to control group (cells). This investigation demonstrated a feasible novel approach for producing electrospun nanocomposites from PBAT and sMWCNT with enhanced mechanical properties and adequate cell viability levels, which allows for a wide range of biomedical applications for these materials.

  • 1
  • 2