2025
Autores
Martinez-Rodrigo, A; Pedrosa, J; Carneiro, D; Cavero-Redondo, I; Saz-Lara, A;
Publicação
APPLIED SCIENCES-BASEL
Abstract
Arterial stiffness (AS) is a well-established predictor of cardiovascular events, including myocardial infarction and stroke. One of the most recognized methods for assessing AS is through arterial pulse wave velocity (aPWV), which provides valuable clinical insights into vascular health. However, its measurement typically requires specialized equipment, making it inaccessible in primary healthcare centers and low-resource settings. In this study, we developed and validated different machine learning models to estimate aPWV using common clinical markers routinely collected in standard medical examinations. Thus, we trained five regression models: Linear Regression, Polynomial Regression (PR), Gradient Boosting Regression, Support Vector Regression, and Neural Networks (NNs) on the EVasCu dataset, a cohort of apparently healthy individuals. A 10-fold cross-validation demonstrated that PR and NN achieved the highest predictive performance, effectively capturing nonlinear relationships in the data. External validation on two independent datasets, VascuNET (a healthy population) and ExIC-FEp (a cohort of cardiopathic patients), confirmed the robustness of PR and NN (R- (2)> 0.90) across different vascular conditions. These results indicate that by using easily accessible clinical variables and AI-driven insights, it is possible to develop a cost-effective tool for aPWV estimation, enabling early cardiovascular risk stratification in underserved and rural areas where specialized AS measurement devices are unavailable.
2025
Autores
Peixoto, E; Torres, D; Carneiro, D; Silva, B; Marques, R;
Publicação
BIG DATA AND COGNITIVE COMPUTING
Abstract
The rapid integration of Machine Learning (ML) in organizational practices has driven demand for substantial computational resources, incurring both high economic costs and environmental impact, particularly from energy consumption. This challenge is amplified in dynamic data environments, where ML models must be frequently retrained to adapt to evolving data patterns. To address this, more sustainable Machine Learning Operations (MLOps) pipelines are needed for reducing environmental impacts while maintaining model accuracy. In this paper, we propose a model reuse approach based on data similarity metrics, which allows organizations to leverage previously trained models where applicable. We introduce a tailored set of meta-features to characterize data windows, enabling efficient similarity assessment between historical and new data. The effectiveness of the proposed method is validated across multiple ML tasks using the cosine and Bray-Curtis distance functions, which evaluate both model reuse rates and the performance of reused models relative to newly trained alternatives. The results indicate that the proposed approach can reduce the frequency of model retraining by up to 70% to 90% while maintaining or even improving predictive performance, contributing to more resource-efficient and sustainable MLOps practices.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.