O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Abstract Autonomous landing for Unmanned Aerial Vehicles (UAVs) requires both
precision and resilience against environmental uncertainties,
capabilities that current approaches struggle to deliver. This paper
presents a novel learning-based solution that combines an advanced
multimodal transformer-based detector with a reinforcement learning
formulation to achieve reliable autonomous landing behavior across
varying scenario uncertainties. Beyond the integration of multimodality
for robust target detection, this research incorporates a comprehensive
analysis of the impact of state representation on decision-making
performance. The proposed methodology is validated through extensive
simulation studies and real-world field experiments conducted on
physical UAV platforms under natural wind disturbances, demonstrating
reliable transfer from simulated training environments to controlled
outdoor conditions. Field experiments across varying initial conditions
and wind stress confirm the system’s robustness, achieving landing
precision of 0.10 ± 0.08 meters in outdoor trials, demonstrating
centimeter-level accuracy that surpasses the meter-level precision of
global positioning systems.
É uma das ferramentas de comunicação mais importantes da instituição, com notícias e artigos sobre ciência e tecnologia feitos pelo INESC TEC, sempre com um tom informal, leve, fresco e ainda autêntico e educacional. Não é politicamente correto, nem pretende ser a voz do Conselho de Administração.