Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Tiago Manuel Campelos

2025

Maximizing PV Hosting Capacity in Unbalanced and Active Distribution Systems With EVs and Demand Response

Autores
Yumbla, J; Home-Ortiz, JM; Pinto, T; Mantovani, JRS;

Publicação
IEEE ACCESS

Abstract
In this paper is presented a mixed-integer linear programming (MILP) model that maximizes the Photovoltaic-based (PV-based) hosting capacity (HC) in unbalanced and active distribution networks. The model takes into account the controlled charge of electric vehicles (EVs) and incorporates a demand-response program (DRP), for demand-side load shifting. The model's solution determines the optimal operation of distributed generators (DGs), switched capacitor banks (SCBs), energy storage devices (ESDs), coordination of the EVs charging, and DRP. Linear formulation is obtained from a mixed-integer non-linear programming (MINLP) model, ensuring tractability and guarantee convergence, since it can be efficiently solved using commercial optimization solvers of convex optimization. The model's effectiveness is demonstrated through tests on a 123-bus, three-phase unbalanced distribution system. Four case studies are conducted to assess the effect of different distributed energy resources (DERs). Results show that the simultaneous optimization of DERs, EVs charging and DR scheduling can significantly increase the PV-based HC -reaching up more than the substation capacity- while reducing total power losses. These findings demonstrate the technical potential of integrated DER coordination in enhancing PV penetration and improving the operational efficiency of active distribution systems.

2022

Deep learning in intelligent power and energy systems

Autores
Mota, B; Pinto, T; Vale, Z; Ramos, C;

Publicação
Intelligent Data Mining and Analysis in Power and Energy Systems: Models and Applications for Smarter Efficient Power Systems

Abstract
The rapid developments in Internet-of-Things (IoT), cloud computing, and big data technologies have increased the popularity of machine learning (ML) techniques. As a result, of all ML techniques, deep learning (DL) is at the forefront of innovation, outperforming all other techniques in many application domains. DL has made breakthroughs in speech recognition, image processing, forecasting, natural language processing, fault detection, power disturbance classification, energy trading, and much more. DL is a complex ML approach composed of multiple processing layers, which allows pattern and structure recognition on huge datasets. This chapter takes an in-depth look at the most recent and promising DL works in the literature for intelligent power and energy systems (PES). Several types of problems are explored, including regression, classification, and decision-making problems. The presented works show an increasing trend of new DL techniques that outperform traditional approaches, either through novel architectures or hybrid systems. © 2023 The Institute of Electrical and Electronics Engineers, Inc.

  • 64
  • 64